• BY WEN LI, ZHENG LIU, RAVI KIRAN KORIPELLA, ROBERT LANGLOIS, SUPARNA SANYAL, JOACHIM FRANK | SCIENCE ADVANCES 22 May 2015: e1500169
    1. Wen Li1,*,
    2. Zheng Liu1,*,
    3. Ravi Kiran Koripella2,
    4. Robert Langlois1,
    5. Suparna Sanyal2 and
    6. Joachim Frank1,3,4,
    1. 1Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Blackwell, 165 West 168th Street, New York, NY 10032, USA.
    2. 2Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden.
    3. 3Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
    4. 4Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
    1. Corresponding author. E-mail: jf2192{at}cumc.columbia.edu
      • * These authors contributed equally to this work.

      Cryo-EM study reveals key molecular structural features for activation of guanosine triphosphate cleavage by EF-G during translocation.

      Keywords
      • Cryo-EM
      • Ribosome
      • translocation
      • Elongation factor G
      • GTP hydrolysis

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    1. BY FREEK MASSEE, PETER OLIVER SPRAU, YONG-LEI WANG, J. C. SÉAMUS DAVIS, GIANLUCA GHIGO, GENDA D. GU, WAI-KWONG KWOK | SCIENCE ADVANCES 22 May 2015: e1500033
      1. Freek Massee1,2,3,*,,
      2. Peter Oliver Sprau1,2,,
      3. Yong-Lei Wang4,
      4. J. C. Séamus Davis1,2,5,6,
      5. Gianluca Ghigo7,8,
      6. Genda D. Gu1 and
      7. Wai-Kwong Kwok4
      1. 1Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
      2. 2Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.
      3. 3Laboratoire de Physique des Solides, Universite Paris-Sud, 91405 Orsay, France.
      4. 4Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
      5. 5School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY16 9SS, UK.
      6. 6Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
      7. 7Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
      8. 8Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino, Italy.
      1. *Corresponding author. E-mail: freek.massee{at}u-psud.fr
        • These authors contributed equally to this work.

        Atomic-scale imaging reveals how individual impact sites of high-energy ions prevent the disruptive motion of magnetic vortices.

        Keywords
        • Iron-based Superconductivity
        • Critical Current by Design
        • Spectroscopic Imaging Scanning Tunneling Microscopy
        • Vortex Pinning
        • High Energy Ion Irradiation

        This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

      1. BY JONATHAN RIVNAY, PIERRE LELEUX, MARC FERRO, MICHELE SESSOLO, ADAM WILLIAMSON, DIMITRIOS A. KOUTSOURAS, DION KHODAGHOLY, MARC RAMUZ, XENOFON STRAKOSAS, ROISIN M. OWENS, CHRISTIAN BENAR, JEAN-MICHEL BADIER, CHRISTOPHE BERNARD, GEORGE G. MALLIARAS | SCIENCE ADVANCES 22 May 2015: e1400251
        1. Jonathan Rivnay1,
        2. Pierre Leleux1,2,
        3. Marc Ferro1,
        4. Michele Sessolo1,*,
        5. Adam Williamson3,4,
        6. Dimitrios A. Koutsouras1,
        7. Dion Khodagholy1,,
        8. Marc Ramuz1,
        9. Xenofon Strakosas1,
        10. Roisin M. Owens1,
        11. Christian Benar3,4,
        12. Jean-Michel Badier3,4,
        13. Christophe Bernard3,4 and
        14. George G. Malliaras1,
        1. 1Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France.
        2. 2MicroVitae Technologies, Pôle d’Activité Y. Morandat, 1480 rue d’Arménie, 13120 Gardanne, France.
        3. 3Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13005 Marseille, France.
        4. 4INSERM, UMR_S 1106, 13005 Marseille, France.
        1. Corresponding author. E-mail: malliaras{at}emse.fr
        • * Present address: Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.

        • Present address: NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, USA.

        Transistors with tunable transconductance allow high-quality recordings of human brain rhythms.

        Keywords
        • Organic electronics
        • bioelectronics
        • electrochemical transistors

        This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

      2. BY LENNART OLSSON, ANNE JERNECK, HENRIK THOREN, JOHANNES PERSSON, DAVID O’BYRNE | SCIENCE ADVANCES 22 May 2015: e1400217
        1. Lennart Olsson1,*,
        2. Anne Jerneck1,
        3. Henrik Thoren2,
        4. Johannes Persson2 and
        5. David O’Byrne1
        1. 1Lund University Centre for Sustainability Studies (LUCSUS), 22100 Lund, Sweden.
        2. 2Department of Philosophy, Lund University, 22100 Lund, Sweden.
        1. *Corresponding author. E-mail: Lennart.Olsson{at}lucsus.lu.se

        Pluralism drawing on core social scientific concepts would facilitate integrated sustainability research.

        Keywords
        • boundary concept
        • functionalism
        • incommensurability
        • integrated research
        • methodological pluralism
        • resilience theory
        • system thinking
        • unification

        This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

      3. BY PIERRE-FRANÇOIS DUC, MICHEL SAVARD, MATEI PETRESCU, BERND ROSENOW, ADRIAN DEL MAESTRO, GUILLAUME GERVAIS | SCIENCE ADVANCES 15 May 2015: e1400222
        1. Pierre-François Duc1,
        2. Michel Savard1,
        3. Matei Petrescu1,
        4. Bernd Rosenow2,
        5. Adrian Del Maestro3 and
        6. Guillaume Gervais1,4,*
        1. 1Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada.
        2. 2Institut für Theoretische Physik, Universität Leipzig, D-04103 Leipzig, Germany.
        3. 3Department of Physics, University of Vermont, Burlington, VT 05405, USA.
        4. 4Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
        1. *Corresponding author. E-mail: gervais{at}physics.mcgill.ca

        The slowdown of a superflow through a nanoscale pipe is measured and quantified.

        Keywords
        • superfluidity
        • mass flow
        • luttinger liquids
        • strongly-correlated systems
        • quantum fluids
        • dissipation

        This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

      4. BY SEAN R. BRENNAN, CHRISTIAN E. ZIMMERMAN, DIEGO P. FERNANDEZ, THURE E. CERLING, MEGAN V. MCPHEE, MATTHEW J. WOOLLER | SCIENCE ADVANCES 15 May 2015: e1400124
        1. Sean R. Brennan1,2,*,,
        2. Christian E. Zimmerman3,4,
        3. Diego P. Fernandez5,
        4. Thure E. Cerling5,
        5. Megan V. McPhee1,6 and
        6. Matthew J. Wooller1,2
        1. 1School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
        2. 2Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
        3. 3Alaska Science Center, U.S. Geological Survey, Anchorage, AK 99508, USA.
        4. 4Affiliate faculty, University of Alaska Fairbanks, 505 S Chandalar Drive, Fairbanks, AK 99775, USA.
        5. 5Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, USA.
        6. 6Kyeta Consulting, 3261 Nowell Ave., Juneau, AK 99801, USA.
        1. *Corresponding author. E-mail: srbrenn{at}uw.edu
          • Present address: School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98105, USA.

          Strontium isotopes simultaneously delineate fine-scale natal habitats and migrations of Pacific salmon harvested during a coastal commercial fishery.

          Keywords
          • Pacific salmon
          • strontium isotopes
          • natal origins
          • migration
          • commercial fisheries
          • biodiversity
          • conservation

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        1. BY A. TOWNSEND PETERSON, ADOLFO G. NAVARRO-SIGÜENZA, ENRIQUE MARTÍNEZ-MEYER, ANGELA P. CUERVO-ROBAYO, HUMBERTO BERLANGA, JORGE SOBERÓN | SCIENCE ADVANCES 15 May 2015: e1400071
          1. A. Townsend Peterson1,*,
          2. Adolfo G. Navarro-Sigüenza2,
          3. Enrique Martínez-Meyer3,
          4. Angela P. Cuervo-Robayo3,4,
          5. Humberto Berlanga4 and
          6. Jorge Soberón1
          1. 1Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA.
          2. 2Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, México Distrito Federal 04510, México.
          3. 3Instituto de Biología, Universidad Nacional Autónoma de México, México Distrito Federal 04510, México.
          4. 4Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Insurgentes Sur-Periférico 4903, Tlalpan, México Distrito Federal 14010, México.
          1. *Corresponding author. E-mail: town{at}ku.edu

          Evaluation of various climate change factors on Mexican bird populations shows temperature has the strongest influence.

          Keywords
          • Climate change
          • Temperature
          • precipitation
          • land use
          • endemic species
          • faunal change
          • turnover

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        2. BY CHANDRA SEKHAR TIWARY, SHARAN KISHORE, SUMAN SARKAR, DEBIPROSAD ROY MAHAPATRA, PULICKEL M. AJAYAN, KAMANIO CHATTOPADHYAY | SCIENCE ADVANCES 15 May 2015: e1400052
          1. Chandra Sekhar Tiwary1,2,*,
          2. Sharan Kishore1,
          3. Suman Sarkar1,
          4. Debiprosad Roy Mahapatra3,
          5. Pulickel M. Ajayan2 and
          6. Kamanio Chattopadhyay1
          1. 1Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
          2. 2Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA.
          3. 3Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
          1. *Corresponding author. E-mail: cst.iisc{at}gmail.com

          3D printing demonstrates causality between natural shape selection as evolutionary outcome and the mechanostabilization of seashells.

          Keywords
          • Shape of Natural materials
          • FEM
          • 3D printing
          • Mechanical testing

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        3. BY YONG LIU, RENCHAO CHE, GANG CHEN, JIANWEI FAN, ZHENKUN SUN, ZHANGXIONG WU, MINGHONG WANG, BIN LI, JING WEI, YONG WEI, GENG WANG, GUOZHEN GUAN, AHMED A. ELZATAHRY, ABDULAZIZ A. BAGABAS, ABDULLAH M. AL-ENIZI, YONGHUI DENG, HUISHENG PENG, DONGYUAN ZHAO | SCIENCE ADVANCES 08 May 2015: e1500166
          1. Yong Liu1,
          2. Renchao Che1,
          3. Gang Chen2,
          4. Jianwei Fan1,3,
          5. Zhenkun Sun1,
          6. Zhangxiong Wu1,
          7. Minghong Wang1,
          8. Bin Li1,
          9. Jing Wei1,
          10. Yong Wei1,
          11. Geng Wang2,
          12. Guozhen Guan1,
          13. Ahmed A. Elzatahry4,5,
          14. Abdulaziz A. Bagabas6,
          15. Abdullah M. Al-Enizi7,
          16. Yonghui Deng1,
          17. Huisheng Peng8 and
          18. Dongyuan Zhao1,*
          1. 1Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
          2. 2Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
          3. 3College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
          4. 4Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar.
          5. 5Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria 21934, Egypt.
          6. 6National Petrochemical Technology Center (NPTC), Materials Science Research Institute (MSRI), King Abdulaziz City for Science and Technology (KACST), P. O. Box 6086, Riyadh 11442, Kingdom of Saudi Arabia.
          7. 7Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
          8. 8State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
          1. *Corresponding author. E-mail: dyzhao{at}fudan.edu.cn

          Uniform mesoporous single-crystal TiO2 spheres with radial channels from driving orientation assembly can be used for energy storage.

          Keywords
          • Mesoporous materials
          • Titania
          • Assembly
          • Dye-sensitized solar cells
          • Synthesis
          • Radial orientation
          • Single-crystalline
          • Optoelectronic

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        4. BY LAURA PREISS, JULIAN D. LANGER, ÖZKAN YILDIZ, LUISE ECKHARDT-STRELAU, JÉRÔME E. G. GUILLEMONT, ANIL KOUL, THOMAS MEIER | SCIENCE ADVANCES 08 May 2015: e1500106
          1. Laura Preiss1,
          2. Julian D. Langer2,
          3. Özkan Yildiz1,
          4. Luise Eckhardt-Strelau1,
          5. Jérôme E. G. Guillemont3,
          6. Anil Koul4 and
          7. Thomas Meier1,*
          1. 1Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
          2. 2Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
          3. 3Johnson & Johnson Pharmaceutical Research and Development, Campus de Maigremont-BP615, 27106 Val de Reuil Cedex, France.
          4. 4Department of Respiratory Infections, Infectious Diseases and Vaccines Group, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium.
          1. *Corresponding author: E-mail: thomas.meier{at}biophys.mpg.de

          Structure and inhibition mechanism of the anti-TB drug bedaquiline bound to the ATP synthase rotor from Mycobacteria.

          Keywords
          • Tuberculosis (TB) antibiotics
          • F1Fo-ATP synthase rotor
          • c-ring
          • X-ray crystallography
          • membrane protein structure
          • Bedaquiline (BDQ)
          • SirturoTM
          • drug binding
          • inhibition mechanism

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        5. BY TOMOAKI KUBO, TAKUMI KATO, YUJI HIGO, KEN-ICHI FUNAKOSHI | SCIENCE ADVANCES 08 May 2015: e1500075
          1. Tomoaki Kubo1,*,
          2. Takumi Kato1,
          3. Yuji Higo2 and
          4. Ken-ichi Funakoshi2
          1. 1Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan.
          2. 2Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.
          1. *Corresponding author. E-mail: kubotomo{at}geo.kyushu-u.ac.jp

          High-pressure experiments have revealed that seifertite metastably forms at much lower pressures than previously thought.

          Keywords
          • shocked meteorite
          • silica polymorphs
          • seifertite
          • high pressure
          • kinetics
          • metastable phase

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        6. BY AMANDA JONSSON, ZHIYANG SONG, DAVID NILSSON, BJÖRN A. MEYERSON, DANIEL T. SIMON, BENGT LINDEROTH, MAGNUS BERGGREN | SCIENCE ADVANCES 08 May 2015: e1500039
          1. Amanda Jonsson1,*,
          2. Zhiyang Song2,*,
          3. David Nilsson3,
          4. Björn A. Meyerson2,
          5. Daniel T. Simon1,,
          6. Bengt Linderoth2 and
          7. Magnus Berggren1
          1. 1Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.
          2. 2Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
          3. 3Acreo Swedish ICT AB, SE-601 17 Norrköping, Sweden.
          1. Corresponding author. E-mail: daniel.simon{at}liu.se
          • * These authors contributed equally to this work.

          Implanted organic bioelectronics provide possible alternative to existing pain treatments.

          Keywords
          • Organic bioelectronics
          • conducting polymers
          • polyelectrolytes
          • neuropathic pain
          • Drug delivery
          • therapeutic
          • in vivo
          • spinal cord

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        7. BY VIPAN K. PARIHAR, BARRETT ALLEN, KATHERINE K. TRAN, TRISHA G. MACARAEG, ESTHER M. CHU, STEPHANIE F. KWOK, NICOLE N. CHMIELEWSKI, BRIANNA M. CRAVER, JANET E. BAULCH, MUNJAL M. ACHARYA, FRANCIS A. CUCINOTTA, CHARLES L. LIMOLI | SCIENCE ADVANCES 01 May 2015: e1400256
          1. Vipan K. Parihar1,
          2. Barrett Allen1,
          3. Katherine K. Tran1,
          4. Trisha G. Macaraeg1,
          5. Esther M. Chu1,
          6. Stephanie F. Kwok1,
          7. Nicole N. Chmielewski1,
          8. Brianna M. Craver1,
          9. Janet E. Baulch1,
          10. Munjal M. Acharya1,
          11. Francis A. Cucinotta2 and
          12. Charles L. Limoli1,*
          1. 1Department of Radiation Oncology, University of California, Irvine, Irvine, CA 92697–2695, USA.
          2. 2Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
          1. *Corresponding author. E-mail: climoli{at}uci.edu

          Animal models reveal an unexpected sensitivity of mature neurons in the brain to the charged particles found in space.

          Keywords
          • Charged particles
          • medial prefrontal cortex
          • dendritic complexity
          • dendritic spines
          • radiation-induced cognitive dysfunction
          • PSD-95

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        8. BY JÉRÉMIE PALACCI, STEFANO SACANNA, ANAÏS ABRAMIAN, JÉRÉMIE BARRAL, KASEY HANSON, ALEXANDER Y. GROSBERG, DAVID J. PINE, PAUL M. CHAIKIN | SCIENCE ADVANCES 01 May 2015: e1400214
          1. Jérémie Palacci1,2,*,
          2. Stefano Sacanna3,
          3. Anaïs Abramian4,
          4. Jérémie Barral5,
          5. Kasey Hanson6,
          6. Alexander Y. Grosberg1,
          7. David J. Pine1 and
          8. Paul M. Chaikin1
          1. 1Department of Physics, New York University, New York, NY 10003, USA.
          2. 2Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
          3. 3Department of Chemistry, New York University, New York, NY 10003, USA.
          4. 4Département de Physique, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
          5. 5Center for Neural Science, New York University, New York, NY 10003, USA.
          6. 6School of Materials Science and Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
          1. *Corresponding author. E-mail: palacci{at}ucsd.edu

          Synthetic self-propelled particles that migrate upstream mimic bacteria.

          Keywords
          • active colloids
          • biomimetism
          • non-equilibrium physics

          This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

        Pages