• BY JOSE C. CLEMENTE, ERICA C. PEHRSSON, MARTIN J. BLASER, KULDIP SANDHU, ZHAN GAO, BIN WANG, MAGDA MAGRIS, GLIDA HIDALGO, MONICA CONTRERAS, ÓSCAR NOYA-ALARCÓN, ORLANA LANDER, JEREMY MCDONALD, MIKE COX, JENS WALTER, PHAIK LYN OH, JEAN F. RUIZ, SELENA RODRIGUEZ, NAN SHEN, SE JIN SONG, JESSICA METCALF, ROB KNIGHT, GAUTAM DANTAS, M. GLORIA DOMINGUEZ-BELLO | SCIENCE ADVANCES 17 Apr 2015: e1500183
    1. Jose C. Clemente1,2,*,
    2. Erica C. Pehrsson3,*,
    3. Martin J. Blaser4,5,
    4. Kuldip Sandhu5,,
    5. Zhan Gao5,
    6. Bin Wang3,
    7. Magda Magris6,
    8. Glida Hidalgo6,
    9. Monica Contreras7,
    10. Óscar Noya-Alarcón6,
    11. Orlana Lander8,
    12. Jeremy McDonald9,
    13. Mike Cox9,
    14. Jens Walter10,,
    15. Phaik Lyn Oh10,
    16. Jean F. Ruiz11,
    17. Selena Rodriguez11,
    18. Nan Shen1,
    19. Se Jin Song12,
    20. Jessica Metcalf12,
    21. Rob Knight12,13,§,
    22. Gautam Dantas3,14 and
    23. M. Gloria Dominguez-Bello5,7,11,
    1. 1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
    2. 2Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
    3. 3Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.
    4. 4Laboratory Service, VA Medical Center, New York, NY 10010, USA.
    5. 5New York University School of Medicine, New York, NY 10016, USA.
    6. 6Amazonic Center for Research and Control of Tropical Diseases (CAICET), Puerto Ayacucho 7101, Venezuela.
    7. 7Venezuelan Institute for Scientific Research, Caracas 1020-A, Venezuela.
    8. 8Sección de Ecología Parasitaria, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1051, Venezuela.
    9. 9Anaerobe Systems, Morgan Hill, CA 95037, USA.
    10. 10Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68583, USA.
    11. 11Department of Biology, University of Puerto Rico, Rio Piedras 00931, Puerto Rico.
    12. 12Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.
    13. 13Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA.
    14. 14Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
    1. Corresponding author. E-mail: maria.dominguez-bello{at}nyumc.org
      • * These authors contributed equally to this work.

      • Deceased.

      • Present address: Department of Biological Sciences and of Agricultural, Food, and Nutritional Science, University of Alberta, Alberta, Edmonton T6G 2R3, Canada.

      • § Present address: Departments of Pediatrics and Computer Science & Engineering, University of California at San Diego, La Jolla, CA 92093, USA.

      Fecal, oral, and skin biomes of isolated Amerindians show higher human bacterial diversity including antibiotic resistance genes.

      Keywords
      • Antibiotic
      • Amerindian
      • Microbiome
      • Resistome
      • Westernization

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    1. BY ANDERS JOHANSEN, MORDECAI-MARK MAC LOW, PEDRO LACERDA, MARTIN BIZZARRO | SCIENCE ADVANCES 17 Apr 2015: e1500109
      1. Anders Johansen1,*,
      2. Mordecai-Mark Mac Low2,
      3. Pedro Lacerda3 and
      4. Martin Bizzarro4
      1. 1Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 22100 Lund, Sweden.
      2. 2Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024–5192, USA.
      3. 3Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany.
      4. 4Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
      1. *Corresponding author. E-mail: anders{at}astro.lu.se

      Chondrules, tiny spheres found in primitive meteorites, accumulate through gas drag to form asteroids and planetary embryos.

      Keywords
      • minor planets
      • asteroids: general
      • methods: numerical
      • hydrodynamics
      • planets and satellites: formation
      • turbulence
      • protoplanetary disks

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    2. BY RUTH H. ZADIK, YASUHIRO TAKABAYASHI, GYÖNGYI KLUPP, ROSS H. COLMAN, ALEXEY Y. GANIN, ANTON POTOČNIK, PETER JEGLIČ, DENIS ARČON, PÉTER MATUS, KATALIN KAMARÁS, YUICHI KASAHARA, YOSHIHIRO IWASA, ANDREW N. FITCH, YASUO OHISHI, GASTON GARBARINO, KENICHI KATO, MATTHEW J. ROSSEINSKY, KOSMAS PRASSIDES | SCIENCE ADVANCES 17 Apr 2015: e1500059
      1. Ruth H. Zadik1,
      2. Yasuhiro Takabayashi1,
      3. Gyöngyi Klupp1,2,
      4. Ross H. Colman1,
      5. Alexey Y. Ganin3,
      6. Anton Potočnik4,
      7. Peter Jeglič4,
      8. Denis Arčon4,
      9. Péter Matus2,
      10. Katalin Kamarás2,
      11. Yuichi Kasahara5,
      12. Yoshihiro Iwasa5,
      13. Andrew N. Fitch6,
      14. Yasuo Ohishi7,
      15. Gaston Garbarino6,
      16. Kenichi Kato8,
      17. Matthew J. Rosseinsky3 and
      18. Kosmas Prassides1,9,10,*
      1. 1Department of Chemistry, Durham University, Durham DH13LE, UK.
      2. 2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, Hungary.
      3. 3Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
      4. 4Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
      5. 5Quantum-Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.
      6. 6European Synchrotron Radiation Facility, 38043 Grenoble, France.
      7. 7Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198, Japan.
      8. 8RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
      9. 9World Premier International–Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
      10. 10Japan Science and Technology Agency, ERATO Isobe Degenerate π-Integration Project, Tohoku University, Sendai 980-8577, Japan.
      1. *Corresponding author. E-mail: k.prassides{at}wpi-aimr.tohoku.ac.jp

      A superconductivity dome is created by the electronic structure of the molecular building block of an unconventional superconductor.

      Keywords
      • superconductivity
      • Strong correlations
      • Jahn-Teller effect
      • Metal-insulator transitions

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    3. BY MARCO BENTIVEGNA, NICOLÒ SPAGNOLO, CHIARA VITELLI, FULVIO FLAMINI, NIKO VIGGIANIELLO, LUDOVICO LATMIRAL, PAOLO MATALONI, DANIEL J. BROD, ERNESTO F. GALVÃO, ANDREA CRESPI, ROBERTA RAMPONI, ROBERTO OSELLAME, FABIO SCIARRINO | SCIENCE ADVANCES 17 Apr 2015: e1400255
      1. Marco Bentivegna1,
      2. Nicolò Spagnolo1,
      3. Chiara Vitelli1,2,
      4. Fulvio Flamini1,
      5. Niko Viggianiello1,
      6. Ludovico Latmiral1,
      7. Paolo Mataloni1,
      8. Daniel J. Brod3,
      9. Ernesto F. Galvão4,
      10. Andrea Crespi5,6,
      11. Roberta Ramponi5,6,
      12. Roberto Osellame5,6 and
      13. Fabio Sciarrino1,*
      1. 1Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
      2. 2Center of Life NanoScience @ La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 255, I-00185 Roma, Italy.
      3. 3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada.
      4. 4Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Niterói, Rio de Janeiro 24210-340, Brazil.
      5. 5Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
      6. 6Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy.
      1. *Corresponding author. E-mail: fabio.sciarrino{at}uniroma1.it

      A novel experiment supports quantum computation using photonic circuits to greatly increase quantum device speed.

      Keywords
      • Boson Sampling
      • Integrated quantum photonics
      • Quantum information processing
      • Quantum walk
      • Quantum simulations
      • Quantum optics
      • Quantum supremacy
      • Multiphoton quantum interference
      • Bosonic coalescence

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    4. BY SARAH E. MINSON, BENJAMIN A. BROOKS, CRAIG L. GLENNIE, JESSICA R. MURRAY, JOHN O. LANGBEIN, SUSAN E. OWEN, THOMAS H. HEATON, ROBERT A. IANNUCCI, DARREN L. HAUSER | SCIENCE ADVANCES 10 Apr 2015: e1500036
      1. Sarah E. Minson1,2,
      2. Benjamin A. Brooks1,*,
      3. Craig L. Glennie3,
      4. Jessica R. Murray1,
      5. John O. Langbein1,
      6. Susan E. Owen4,
      7. Thomas H. Heaton2,
      8. Robert A. Iannucci5 and
      9. Darren L. Hauser3
      1. 1U.S. Geological Survey, Menlo Park, CA 94025, USA.
      2. 2California Institute of Technology, Pasadena, CA 91106, USA.
      3. 3National Center for Airborne Laser Mapping, University of Houston, Houston, TX 77204, USA.
      4. 4Jet Propulsion Laboratory, La Cañada Flintridge, Pasadena, CA 91109, USA.
      5. 5Carnegie Mellon University–Silicon Valley, Moffett Field, CA 94035, USA.
      1. *Corresponding author. E-mail: bbrooks{at}usgs.gov

      Consumer devices and real and simulated earthquake data demonstrate that earthquake early warning can be achieved via crowdsourcing.

      Keywords
      • Earthquake Early Warning
      • Crowd-Sourcing
      • Seismology
      • Geodesy
      • Earthquakes
      • Tsunami
      • Natural Disasters

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    5. BY ARNE LAUCHT, JUHA T. MUHONEN, FAHD A. MOHIYADDIN, RACHPON KALRA, JUAN P. DEHOLLAIN, SOLOMON FREER, FAY E. HUDSON, MENNO VELDHORST, RAJIB RAHMAN, GERHARD KLIMECK, KOHEI M. ITOH, DAVID N. JAMIESON, JEFFREY C. MCCALLUM, ANDREW S. DZURAK, ANDREA MORELLO | SCIENCE ADVANCES 10 Apr 2015: e1500022
      1. Arne Laucht1,*,
      2. Juha T. Muhonen1,
      3. Fahd A. Mohiyaddin1,
      4. Rachpon Kalra1,
      5. Juan P. Dehollain1,
      6. Solomon Freer1,
      7. Fay E. Hudson1,
      8. Menno Veldhorst1,
      9. Rajib Rahman2,
      10. Gerhard Klimeck2,
      11. Kohei M. Itoh3,
      12. David N. Jamieson4,
      13. Jeffrey C. McCallum4,
      14. Andrew S. Dzurak1 and
      15. Andrea Morello1,*
      1. 1Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales 2052, Australia.
      2. 2Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47907, USA.
      3. 3School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
      4. 4Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia.
      1. *Corresponding author. E-mail: a.laucht{at}unsw.edu.au (A.L.); a.morello{at}unsw.edu.au (A.M.)

      Control of individual spin qubits through local electric fields, suitable for large-scale silicon quantum computers.

      Keywords
      • Quantum computing
      • Single-atom spin qubits
      • Silicon nanoelectronics
      • Local electrical control
      • Magnetic resonance
      • Phosphorus donor

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    6. BY HIDEKI IWAMOTO, YIN ZHANG, TAKAHIRO SEKI, YUNLONG YANG, MASAKI NAKAMURA, JIAN WANG, XIAOJUAN YANG, TAKUJI TORIMURA, YIHAI CAO | SCIENCE ADVANCES 10 Apr 2015: e1400244
      1. Hideki Iwamoto1,
      2. Yin Zhang1,
      3. Takahiro Seki1,
      4. Yunlong Yang1,
      5. Masaki Nakamura1,
      6. Jian Wang1,
      7. Xiaojuan Yang1,2,
      8. Takuji Torimura3 and
      9. Yihai Cao1,4,5,*
      1. 1Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
      2. 2Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People’s Republic of China.
      3. 3Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 831 0011 Kurume, Japan.
      4. 4Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden.
      5. 5Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK.
      1. *Corresponding author: E-mail: yihai.cao{at}ki.se

      Notch inhibitors cause cancer growth in tumors expressing PIGFβ protein.

      Keywords
      • Angiogenesis
      • Notch signaling
      • tumor growth
      • PlGF
      • vascular
      • remodeling

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    7. BY KUI CHENG, MENG GAO, JAMES I. GODFROY, PETER N. BROWN, NOAH KASTELOWITZ, HANG YIN | SCIENCE ADVANCES 10 Apr 2015: e1400139
      1. Kui Cheng1,
      2. Meng Gao1,
      3. James I. Godfroy2,
      4. Peter N. Brown2,
      5. Noah Kastelowitz2 and
      6. Hang Yin1,2,*
      1. 1Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China.
      2. 2Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
      1. *Corresponding author. E-mail: hang.yin{at}colorado.edu

      A small-molecule agonist of the Toll-like receptor 1/2 signaling pathway does it by stabilizing heterodimeric associations.

      Keywords
      • toll-like receptors
      • drug discovery
      • vaccine adjuvant
      • chemical probes

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    8. BY VALMIK K. VYAS, M. INMACULADA BARRASA, GERALD R. FINK | SCIENCE ADVANCES 03 Apr 2015: e1500248
      1. Valmik K. Vyas1,
      2. M. Inmaculada Barrasa1 and
      3. Gerald R. Fink1,2,*
      1. 1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
      2. 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
      1. *Corresponding author. E-mail: gfink{at}wi.mit.edu

      CRISPR simplifies genetic engineering of the human fungal pathogen Candida albicans.

      Keywords
      • Candida albicans
      • CRISPR
      • Cas9
      • genetics
      • mutagenesis
      • fungal pathogenesis
      • CaCas9
      • CTG clade

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    9. BY JUN TANG, MARK E. LOBATTO, LAURIEN HASSING, SUSANNE VAN DER STAAY, SARIAN M. VAN RIJS, CLAUDIA CALCAGNO, MOUNIA S. BRAZA, SAMANTHA BAXTER, FRANCOIS FAY, BRENDA L. SANCHEZ-GAYTAN, RAPHAËL DUIVENVOORDEN, HENDRIK B. SAGER, YARITZY M. ASTUDILLO, WEI LEONG, SARAYU RAMACHANDRAN, GERT STORM, CARLOS PÉREZ-MEDINA, THOMAS REINER, DAVID P. CORMODE, GUSTAV J. STRIJKERS, ERIK S. G. STROES, FILIP K. SWIRSKI, MATTHIAS NAHRENDORF, EDWARD A. FISHER, ZAHI A. FAYAD, WILLEM J. M. MULDER | SCIENCE ADVANCES 03 Apr 2015: e1400223
      1. Jun Tang1,2,
      2. Mark E. Lobatto1,3,
      3. Laurien Hassing1,3,
      4. Susanne van der Staay1,3,
      5. Sarian M. van Rijs1,3,
      6. Claudia Calcagno1,
      7. Mounia S. Braza1,
      8. Samantha Baxter1,
      9. Francois Fay1,
      10. Brenda L. Sanchez-Gaytan1,
      11. Raphaël Duivenvoorden3,
      12. Hendrik B. Sager4,
      13. Yaritzy M. Astudillo5,
      14. Wei Leong1,2,
      15. Sarayu Ramachandran1,
      16. Gert Storm6,7,
      17. Carlos Pérez-Medina1,
      18. Thomas Reiner8,
      19. David P. Cormode9,
      20. Gustav J. Strijkers10,
      21. Erik S. G. Stroes3,
      22. Filip K. Swirski4,
      23. Matthias Nahrendorf4,
      24. Edward A. Fisher5,
      25. Zahi A. Fayad1 and
      26. Willem J. M. Mulder1,3,*
      1. 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
      2. 2Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
      3. 3Department of Vascular Medicine, Academic Medical Center, 1105 AZ Amsterdam, Netherlands.
      4. 4Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
      5. 5Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA.
      6. 6Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.
      7. 7Department of Controlled Drug Delivery, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, 7500 AE Enschede, Netherlands.
      8. 8Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
      9. 9Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
      10. 10Department of Biomedical Engineering and Physics, Academic Medical Center, 1105 AZ Amsterdam, Netherlands.
      1. *Corresponding author. E-mail: willem.mulder{at}mssm.edu

      Nanoparticle-based delivery of simvastatin inhibits plaque macrophage proliferation in apolipoprotein E–deficient mice.

      Keywords
      • nanomedicine
      • atherosclerosis
      • inflammation
      • proliferation
      • macrophage
      • high-density lipoprotein
      • ApoE knockout mice
      • Molecular Imaging
      • radiochemistry

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    10. BY FLORIAN MEIRER, SAM KALIRAI, DARIUS MORRIS, SANTOSH SOPARAWALLA, YIJIN LIU, GERBRAND MESU, JOY C. ANDREWS, BERT M. WECKHUYSEN | SCIENCE ADVANCES 03 Apr 2015: e1400199
      1. Florian Meirer1,*,
      2. Sam Kalirai1,*,
      3. Darius Morris2,3,
      4. Santosh Soparawalla3,
      5. Yijin Liu2,
      6. Gerbrand Mesu3,
      7. Joy C. Andrews2 and
      8. Bert M. Weckhuysen1,
      1. 1Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands.
      2. 2Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
      3. 3Research Centre for Catalysts, Albemarle Corporation, 13000 Baypark Road, Pasadena, TX 77507, USA.
      1. Corresponding author. E-mail: b.m.weckhuysen{at}uu.nl
      • * These authors contributed equally to this work.

      Macropore blocking through metal deposition and intrusion of particles is a major deactivation mechanism in FCC catalysts essential to gasoline production.

      Keywords
      • Chemistry
      • Catalysis
      • Catalyst deactivation
      • Fluid Catalytic Cracking
      • Crude Oil Processing
      • X-ray Microscopy
      • Chemical Imaging
      • Metal Poisons
      • Zeolite

      This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    11. BY N. T. NASSAR, T. E. GRAEDEL, E. M. HARPER | SCIENCE ADVANCES 03 Apr 2015: e1400180
      1. N. T. Nassar*,
      2. T. E. Graedel and
      3. E. M. Harper
      1. Center for Industrial Ecology, Yale University, New Haven, CT, USA.
      1. *Corresponding author. E-mail: nedal.nassar{at}yale.edu

      Metals that are obtained largely or entirely as by-products are essential to modern technology, but their supplies may be constrained due to a variety of factors.

      Keywords
      • critical metals
      • industrial ecology
      • resource management
      • sustainability
      • mineral production

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    12. BY LESLIE RENOUARD, FRANCESCA BILLWILLER, KEIKO OGAWA, OLIVIER CLÉMENT, NUTABI CAMARGO, MOUAADH ABDELKARIM, NADINE GAY, CÉLINE SCOTÉ-BLACHON, ROUGUY TOURÉ, PAUL-ANTOINE LIBOUREL, PASCAL RAVASSARD, DENISE SALVERT, CHRISTELLE PEYRON, BRUNO CLAUSTRAT, LUCIENNE LÉGER, PAUL SALIN, GAEL MALLERET, PATRICE FORT, PIERRE-HERVÉ LUPPI | SCIENCE ADVANCES 03 Apr 2015: e1400177
      1. Leslie Renouard1,2,
      2. Francesca Billwiller1,
      3. Keiko Ogawa1,
      4. Olivier Clément1,
      5. Nutabi Camargo1,
      6. Mouaadh Abdelkarim1,
      7. Nadine Gay1,
      8. Céline Scoté-Blachon1,
      9. Rouguy Touré1,
      10. Paul-Antoine Libourel1,
      11. Pascal Ravassard1,
      12. Denise Salvert1,
      13. Christelle Peyron1,
      14. Bruno Claustrat3,
      15. Lucienne Léger1,
      16. Paul Salin1,
      17. Gael Malleret1,
      18. Patrice Fort1 and
      19. Pierre-Hervé Luppi1,*
      1. 1UMR 5292 CNRS/U1028 INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil,” Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France.
      2. 2College of Medical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, PBS230, Spokane, WA 99202, USA.
      3. 3Service de Radioanalyse, Centre de Médecine nucléaire, 59 Boulevard Pinel, 69677 Bron Cedex, France.
      1. *Corresponding author. E-mail: luppi{at}sommeil.univ-lyon1.fr

      Plasticity and cortical activation during REM sleep is shown by a subset of cortical and hippocampal neurons.

      Keywords
      • REM sleep
      • dentate gyrus
      • supramammillary nucleus
      • immediate early genes
      • hippocampus

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    13. BY HUI XU, YUCI XU, XINCHANG PANG, YANJIE HE, JAEHAN JUNG, HAIPING XIA, ZHIQUN LIN | SCIENCE ADVANCES 27 Mar 2015: e1500025
      1. Hui Xu1,2,
      2. Yuci Xu3,
      3. Xinchang Pang1,
      4. Yanjie He1,
      5. Jaehan Jung1,
      6. Haiping Xia2,* and
      7. Zhiqun Lin1,*
      1. 1School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
      2. 2State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
      3. 3Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, Zhejiang 315211, China.
      1. *Corresponding author. E-mail: zhiqun.lin{at}mse.gatech.edu (Z.L.); hpxia{at}xmu.edu.cn (H.X.)

      Organic-inorganic 1D periodic necklace-like nanostructures are fabricated using confined synthesis of inorganic nanocrystals.

      Keywords
      • uniform
      • organic-inorganic shish-kebabs
      • nanonecklace-like nanostructures
      • nanodisks
      • amphiphilic worm-like diblock copolymer
      • nanoreactors
      • simulations
      • self-consistent field theory

      This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

    Pages