Research ArticleASTROPHYSICS

Precise stellar surface gravities from the time scales of convectively driven brightness variations

+ See all authors and affiliations

Science Advances  01 Jan 2016:
Vol. 2, no. 1, e1500654
DOI: 10.1126/sciadv.1500654

You are currently viewing the abstract.

View Full Text


A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars’ surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA’s Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.

  • Stars
  • stellar fundamental parameters
  • convection
  • granulation
  • stellar oscillations

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

More Like This