Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer

+ See all authors and affiliations

Science Advances  02 Nov 2016:
Vol. 2, no. 11, e1600261
DOI: 10.1126/sciadv.1600261

You are currently viewing the abstract.

View Full Text


Hydrophobic nanoparticles introduced into living systems may lead to increased toxicity, can activate immune cells, or can be used as nanocarriers for drug or gene delivery. It is generally accepted that small hydrophobic nanoparticles are blocked by lipid bilayers and accumulate in the bilayer core, whereas big nanoparticles can only penetrate cells through slow energy-dependent processes, such as endocytosis, lasting minutes. In contrast to expectations, we demonstrate that lipid-covered hydrophobic nanoparticles may translocate through lipid membranes by direct penetration within milliseconds. We identified the threshold size for translocation: nanoparticles with diameters smaller than 5 nm stay trapped in the bilayer, whereas those with diameters larger than 5 nm insert into the bilayer, opening pores in the bilayer. The direct proof of this size-dependent translocation was provided by an in situ observation of a single event of a nanoparticle quitting the bilayer. This was achieved with a specially designed microfluidic device combining optical fluorescence microscopy with simultaneous electrophysiological measurements. A quantitative analysis of the kinetic pathway of a single nanoparticle translocation event demonstrated that the translocation is irreversible and that the nanoparticle can translocate only once. This newly discovered one-way translocation mechanism provides numerous opportunities for biotechnological applications, ranging from targeted biomaterial elimination and/or delivery to precise and controlled trapping of nanoparticles.

  • Lipid bilayers
  • nanoparticles
  • microfluidics
  • translocation dynamics

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

More Like This