Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2

See allHide authors and affiliations

Science Advances  23 Nov 2016:
Vol. 2, no. 11, e1600894
DOI: 10.1126/sciadv.1600894

You are currently viewing the abstract.

View Full Text


The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level (EF) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe2. Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross EF, on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe2 as a promising candidate for TSC.

  • Topological superconductor
  • non-centrosymmetric superconductor

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text