Research ArticleNETWORK SCIENCE

Synchronization in networks with multiple interaction layers

See allHide authors and affiliations

Science Advances  16 Nov 2016:
Vol. 2, no. 11, e1601679
DOI: 10.1126/sciadv.1601679

You are currently viewing the abstract.

View Full Text

Abstract

The structure of many real-world systems is best captured by networks consisting of several interaction layers. Understanding how a multilayered structure of connections affects the synchronization properties of dynamical systems evolving on top of it is a highly relevant endeavor in mathematics and physics and has potential applications in several socially relevant topics, such as power grid engineering and neural dynamics. We propose a general framework to assess the stability of the synchronized state in networks with multiple interaction layers, deriving a necessary condition that generalizes the master stability function approach. We validate our method by applying it to a network of Rössler oscillators with a double layer of interactions and show that highly rich phenomenology emerges from this. This includes cases where the stability of synchronization can be induced even if both layers would have individually induced unstable synchrony, an effect genuinely arising from the true multilayer structure of the interactions among the units in the network.

Keywords
  • Multi-layer networks
  • synchronization
  • stability
  • master stability function

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text