Thiacalix[4]arene: New protection for metal nanoclusters

See allHide authors and affiliations

Science Advances  12 Aug 2016:
Vol. 2, no. 8, e1600323
DOI: 10.1126/sciadv.1600323

You are currently viewing the abstract.

View Full Text


Surface organic ligands are critical for the formation and properties of atomically precise metal nanoclusters. In contrast to the conventionally used protective ligands such as thiolates and phosphines, thiacalix[4]arene has been used in the synthesis of a silver nanocluster, [Ag35(H2L)2(L)(C≡CBut)16](SbF6)3, (H4L, p-tert-butylthiacalix[4]-arene). This is the first structurally determined calixarene-protected metal nanocluster. The chelating and macrocyclic effects make the thiacalix[4]arene a rigid shell that protects the silver core. Upon addition or removal of one silver atom, the Ag35 cluster can be transformed to Ag36 or Ag34 species, and the optical properties are changed accordingly. The successful use of thiacalixarene in the synthesis of well-defined silver nanoclusters suggests a bright future for metal nanoclusters protected by macrocyclic ligands.

  • Calixarene
  • crystal structure
  • silver nanocluster
  • alkynyl ligand
  • coordination mode
  • ligand-protected metal nanocluster

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text