Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

+ See all authors and affiliations

Science Advances  16 Sep 2016:
Vol. 2, no. 9, e1501814
DOI: 10.1126/sciadv.1501814

You are currently viewing the abstract.

View Full Text


Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.

  • Piezoelectricity
  • ferroelectric
  • relaxor
  • phonons
  • local modes
  • neutron scattering

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

More Like This