Topological bootstrap: Fractionalization from Kondo coupling

See allHide authors and affiliations

Science Advances  06 Oct 2017:
Vol. 3, no. 10, e1700729
DOI: 10.1126/sciadv.1700729

You are currently viewing the abstract.

View Full Text


Topologically ordered phases of matter can host fractionalized excitations known as “anyons,” which obey neither Bose nor Fermi statistics. Despite forming the basis for topological quantum computation, experimental access to these exotic phases has been very limited. We present a new route toward realizing fractionalized topological phases by literally building on unfractionalized phases, which are much more easily realized experimentally. Our approach involves a Kondo lattice model in which a gapped electronic system of noninteracting fermions is coupled to local moments via the exchange interaction. Using general entanglement-based arguments and explicit lattice models, we show that gapped spin liquids can be induced in the spin system, and we demonstrate the power of this “topological bootstrap” by realizing chiral and Z2 spin liquids. This technique enables the realization of many long sought-after fractionalized phases of matter.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text