Comprehensive vaccine design for commensal disease progression

See allHide authors and affiliations

Science Advances  18 Oct 2017:
Vol. 3, no. 10, e1701797
DOI: 10.1126/sciadv.1701797

You are currently viewing the abstract.

View Full Text


Commensal organisms with the potential to cause disease pose a challenge in developing treatment options. Using the example featured in this study, pneumococcal disease begins with Streptococcus pneumoniae colonization, followed by triggering events that prompt the release of a virulent subpopulation of bacteria. Current vaccines focus on colonization prevention, which poses unintended consequences of serotype niche replacement. In this study, noncovalent colocalization of two classes of complementary antigens, one to prevent the colonization of the most aggressive S. pneumoniae serotypes and another to restrict virulence transition, provides complete vaccine effectiveness in animal subjects and the most comprehensive coverage of disease reported to date. As a result, the proposed vaccine formulation offers universal pneumococcal disease prevention with the prospect of effectively managing a disease that afflicts tens to hundreds of millions globally. The approach more generally puts forth a balanced prophylactic treatment strategy in response to complex commensal-host dynamics.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text