Research ArticleCONDENSED MATTER PHYSICS

K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure

See allHide authors and affiliations

Science Advances  03 Nov 2017:
Vol. 3, no. 11, e1700162
DOI: 10.1126/sciadv.1700162

You are currently viewing the abstract.

View Full Text

Abstract

Monolayer MoS2 is a promising material for optoelectronics applications owing to its direct bandgap, enhanced Coulomb interaction, strong spin-orbit coupling, unique valley pseudospin degree of freedom, etc. It can also be implemented for novel spintronics and valleytronics devices at atomic scale. The band structure of monolayer MoS2 is well known to have a direct gap at K (K′) point, whereas the second lowest conduction band minimum is located at Λ point, which may interact with the valence band maximum at K point, to make an indirect optical bandgap transition. We experimentally demonstrate the direct-to-indirect bandgap transition by measuring the photoluminescence spectra of monolayer MoS2 under hydrostatic pressure at room temperature. With increasing pressure, the direct transition shifts at a rate of 49.4 meV/GPa, whereas the indirect transition shifts at a rate of −15.3 meV/GPa. We experimentally extract the critical transition point at the pressure of 1.9 GPa, in agreement with first-principles calculations. Combining our experimental observation with first-principles calculations, we confirm that this transition is caused by the K-Λ crossover in the conduction band.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text