Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen

+ See all authors and affiliations

Science Advances  03 Feb 2017:
Vol. 3, no. 2, e1600542
DOI: 10.1126/sciadv.1600542

You are currently viewing the abstract.

View Full Text


We report new results for electrochemical H adsorption on and absorption in octahedral palladium nanoparticles (Pd-NPs) with an average tip-to-tip size of 7.8 nm and a narrow size distribution. They reveal a very high H loading of 0.90 that cannot be achieved using bulk Pd materials or larger NPs; this behavior is assigned to a combination of two factors: their small size and face morphology. Temperature-dependent cyclic voltammetry (CV) studies in the range of 296 to 333 K reveal unique features that are attributed to electrochemical H adsorption, H absorption, and H2 generation. The CV features are used to prepare H adsorption and absorption isotherms that are then used in thermodynamic data analysis. Modeling of the experimental results demonstrates that, upon H adsorption and absorption, Pd-NPs develop a core-shell-skin structure, each with its unique H loading. The electrochemical results obtained for octahedral Pd-NPs are compared to analogous data obtained for cubic Pd-NPs with a similar size as well as for larger cubic Pd-NPs and bulk materials under gas-phase conditions.

  • nanoparticles
  • palladium
  • electrochemistry hydrogen adsorption
  • hydrogen absorption
  • thermodynamics

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

More Like This