Kin selection promotes female productivity and cooperation between the sexes

See allHide authors and affiliations

Science Advances  15 Mar 2017:
Vol. 3, no. 3, e1602262
DOI: 10.1126/sciadv.1602262

You are currently viewing the abstract.

View Full Text


Hamilton’s theory of kin selection explains the evolution of costly traits that benefit other individuals by highlighting the fact that passing genes to offspring is not the only way of increasing the representation of those genes in subsequent generations: Genes are also shared with other classes of relatives. Consequently, any heritable trait that affects fitness of relatives should respond to kin selection. We tested this core prediction of kin selection theory by letting bulb mites (Rhizoglyphus robini) evolve in populations structured into groups of relatives or nonrelatives during the reproductive phase of the life cycle. In accordance with predictions derived from kin selection theory, we found that evolution in groups of relatives resulted in increased female reproductive output. This increase at least partly results from the evolution of male traits that elevate their partners’ fecundity. Our results highlight the power and universality of kin selection.

  • kin selection
  • sexual conflict
  • Experimental evolution
  • relatedness
  • competition
  • population structure
  • bulb mite

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text