Research ArticleAPPLIED MATHEMATICS

Machine learning of accurate energy-conserving molecular force fields

See allHide authors and affiliations

Science Advances  05 May 2017:
Vol. 3, no. 5, e1603015
DOI: 10.1126/sciadv.1603015

Article Information

vol. 3 no. 5

Online ISSN: 
History: 
  • Received for publication December 1, 2016
  • Accepted for publication March 7, 2017

Author Information

  1. Stefan Chmiela1,
  2. Alexandre Tkatchenko2,3,*,
  3. Huziel E. Sauceda3,
  4. Igor Poltavsky2,
  5. Kristof T. Schütt1 and
  6. Klaus-Robert Müller1,4,5,*
  1. 1Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany.
  2. 2Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
  3. 3Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
  4. 4Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea.
  5. 5Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany.
  1. *Corresponding author. Email: alexandre.tkatchenko{at}uni.lu (A.T.); klaus-robert.mueller{at}tu-berlin.de (K.-R.M.)

Altmetric

Article usage

Article usage: May 2017 to May 2018

AbstractFullPdf
May 20172274482818
Jun 2017340135232
Jul 2017284141202
Aug 2017268148227
Sep 2017373187275
Oct 2017360150240
Nov 2017313132225
Dec 2017254120200
Jan 2018319119178
Feb 2018304127313
Mar 2018398147274
Apr 2018392169235
May 201821689125