Research ArticleBIOCHEMISTRY

Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA

See allHide authors and affiliations

Science Advances  21 Jun 2017:
Vol. 3, no. 6, e1602128
DOI: 10.1126/sciadv.1602128

You are currently viewing the abstract.

View Full Text

Abstract

Fluorescence microscopy allows specific target detection down to the level of single molecules and has become an enabling tool in biological research. To transduce the biological information to an imageable signal, we have developed a variety of fluorescent probes, such as organic dyes or fluorescent proteins with different colors. Despite their success, a limitation on constructing small fluorescent probes is the lack of a general framework to achieve precise and programmable control of critical optical properties, such as color and brightness. To address this challenge, we introduce metafluorophores, which are constructed as DNA nanostructure–based fluorescent probes with digitally tunable optical properties. Each metafluorophore is composed of multiple organic fluorophores, organized in a spatially controlled fashion in a compact sub–100-nm architecture using a DNA nanostructure scaffold. Using DNA origami with a size of 90 × 60 nm2, substantially smaller than the optical diffraction limit, we constructed small fluorescent probes with digitally tunable brightness, color, and photostability and demonstrated a palette of 124 virtual colors. Using these probes as fluorescent barcodes, we implemented an assay for multiplexed quantification of nucleic acids. Additionally, we demonstrated the triggered in situ self-assembly of fluorescent DNA nanostructures with prescribed brightness upon initial hybridization to a nucleic acid target.

Keywords
  • DNA nanotechnology
  • fluorescence microscopy
  • Metafluorophores
  • single molecule fluorescence
  • Multiplexed Imaging
  • Biophysics
  • self assembly

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text