Research ArticleCLIMATOLOGY

Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America

See allHide authors and affiliations

Science Advances  07 Jun 2017:
Vol. 3, no. 6, e1602263
DOI: 10.1126/sciadv.1602263

You are currently viewing the abstract.

View Full Text

Abstract

Moisture delivery to western North America is closely linked to variability in the westerly storm tracks of midlatitude cyclones, which are, in turn, modified by larger-scale features such as the El Niño–Southern Oscillation system. Instrumental and modeling data suggest that extratropical storm tracks may be intensifying and shifting poleward due to anthropogenic climate change, but it is difficult to separate recent trends from natural variability because of the large amount of decadal and longer variation in storm tracks and their limited instrumental record. We reconstruct cool-season, midlatitude Pacific storm-track position and intensity from 1693 to 1995 CE using existing tree-ring chronologies along with a network of newly developed chronologies from the U.S. Pacific Northwest, where small variations in storm-track position can have a major influence on hydroclimate patterns. Our results show high interannual-to-multidecadal variability in storm-track position and intensity over the past 303 years, with spectral signatures characteristic of tropical and northern Pacific influences. Comparison with reconstructions of precipitation and tropical sea surface temperature confirms the relationship between shifting drought patterns in the Pacific Northwest and storm-track variability through time and demonstrates the long-term influence of El Niño. These results allow us to place recent storm-track changes in the context of decadal and multidecadal fluctuations across the long-term record, showing that recent changes in storm-track intensity likely represent a warming-related increase amplified by natural decadal variability.

Keywords
  • storm tracks
  • paleoclimate
  • Pacific Northwest
  • drought
  • El Nino
  • Pacific Ocean
  • hydroclimate
  • synoptic climatology
  • dendrochronology
  • extra-tropical cyclones

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text