Research ArticleCOMPUTATIONAL BIOLOGY

Multiplexed gene control reveals rapid mRNA turnover

See allHide authors and affiliations

Science Advances  12 Jul 2017:
Vol. 3, no. 7, e1700006
DOI: 10.1126/sciadv.1700006

You are currently viewing the abstract.

View Full Text

Abstract

The rates of mRNA synthesis and decay determine the mRNA expression level. The two processes are under coordinated control, which makes the measurements of these rates challenging, as evidenced by the low correlation among the methods of measurement of RNA half-lives. We developed a minimally invasive method, multiplexed gene control, to shut off expression of genes with controllable synthetic promoters. The method was validated by measuring the ratios of the nascent to mature mRNA molecules and by measuring the half-life with endogenous promoters that can be controlled naturally or through inserting short sequences that impart repressibility. The measured mRNA half-lives correlated highly with those obtained with the metabolic pulse-labeling method in yeast. However, mRNA degradation was considerably faster in comparison to previous estimates, with a median half-life of around 2 min. The half-life permits the estimation of promoter-dependent and promoter-independent transcription rates. The dynamical range of the promoter-independent transcription rates was larger than that of the mRNA half-lives. The rapid mRNA turnover and the broad adjustability of promoter-independent transcription rates are expected to have a major impact on stochastic gene expression and gene network behavior.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text