Research ArticleChemistry

Addressed realization of multication complex arrangements in metal-organic frameworks

See allHide authors and affiliations

Science Advances  21 Jul 2017:
Vol. 3, no. 7, e1700773
DOI: 10.1126/sciadv.1700773
  • Fig. 1 ZnPF-1 is formed by the combination of H2hfipbb with a helical inorganic SBU where the zinc atoms are tetrahedrally coordinated.

    O, C, and F atoms are depicted as red, gray, and green balls, respectively, and pale blue tetrahedra represent zinc cations.

  • Scheme 1 Selection of appropriate molar codes express the formation of different kinds of atomically sequenced inorganic SBUs.

    Corresponding MOF crystals might include multiple SBUs mesoscopically arranged, or just a single one.

  • Fig. 2 SEM image and EDS analysis of Zn0.21Co0.79(hfipbb).

    Metal atomic percent was determined with the spectra recorded at the various points of the crystal indicated in the image.

  • Fig. 3 The inorganic SBU might adapt to include octahedrally coordinated cations, which results in a unit cell transformation where the c parameter is doubled.

    This transformation was monitored by temperature-variable single-crystal XRD and NPD. O, C, and F atoms are depicted as red, gray, and green balls, respectively. Pale blue tetrahedra and dark blue octahedra might represent different metal elements (see text). For the phase transformation depiction, the color of the balls representing the metal elements corresponds to independent crystallographic sites.

  • Fig. 4 NDP Rietveld refinements.

    In the case of the Zn0.59Co0.41(hfipbb) MOF, the refinements indicate the presence of only the original cell at 300 K (A) and both original (15%) and transformed (85%) cells at 50 K (B). In the case of the Zn0.21Co0.79(hfipbb) MOF, both original (66%) and transformed (33%) unit cells are present at 300 K (C), whereas the transformation is almost complete (95%) at 10 K (D). In all cases, the composition of the metal sites was refined. For the multiphase refinements (B to D), the percentage of each unit cell was determined by the ratio of the integrated intensities. Rp and Rwp are unweighted and weighted agreement profile factors, respectively.

  • Fig. 5 NPD and EDS analysis of Zn0.50Mn0.50(hfipbb) MOF.

    (A) For the Zn0.50Mn0.50(hfipbb) MOF, the Rietveld refinement is consistent with presence of only a cell with alternating tetrahedral zinc–octahedral manganese SBUs at 300 K. (B) SEM and EDS analyses show homogeneous distribution of metal elements in Zn0.50Mn0.50(hfipbb).

  • Fig. 6 SEM images and EDS analysis of selected MOFs.

    Representative examples of different MOFs prepared from various molar codes are shown in (A) to (D), demonstrating both homogeneous arrangements (A to C) and compositional gradients (D). Metal atomic percent was determined with the spectra recorded at multiple points or areas of each crystal, as indicated in the images.

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/7/e1700773/DC1

    Supplementary Text

    section S1. Synthesis and characterization

    section S2. X-ray diffraction

    section S3. SEM and EDS analyses

    section S4. Kinetic study of Zn0.59Co0.41(hfipbb)

    section S5. Neutron powder diffraction

    section S6. DFT calculations

    section S7. Magnetic susceptibility measurements

    table S1. Chemical formula and corresponding molar codes and amount of metal salts used for MOF preparation.

    table S2. Results of carbon, hydrogen, and nitrogen analyses and ICP analyses in %weight for all MOFs.

    table S3. Crystal and refinement details for Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1) [Cambridge Crystallographic Data Centre (CCDC) number: 1531921].

    table S4. Crystal data and structure refinement for Zn0.89Co0.11(hfipbb) at 100 K (molar code: Zn:Co 1:1) (CCDC number: 1531920).

    table S5. Crystal and refinement details for Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2) (CCDC number: 1531914).

    table S6. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 200 K (molar code: Zn:Co 1:2) (CCDC number: 1531918).

    table S7. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 150 K (molar code: Zn:Co 1:2) (CCDC number: 1531919).

    table S8. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 100 K (molar code: Zn:Co 1:2) (CCDC number: 1531923).

    table S9. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 50 K (molar code: Zn:Co 1:2) (CCDC number: 1531915).

    table S10. Crystal data and structure refinement for Zn0.55Co0.45(hfipbb) at room temperature (molar code: Zn:Co 1:4) (CCDC number: 1531916).

    table S11. Crystal data and structure refinement for Zn0.55Co0.45(hfipbb) at 100 K (molar code: Zn:Co 1:4) (CCDC number: 1531912).

    table S12. Crystal data and structure refinement for Zn0.21Co0.79(hfipbb) at room temperature (molar code: Zn:Co 1:10) (CCDC number: 1531902).

    table S13. Crystal data and structure refinement for Zn0.21Co0.79(hfipbb) at 100 K (molar code: Zn:Co 1:10) (CCDC number: 1531903).

    table S14. Crystal data and structure refinement for Zn0.50Mn0.5(hfipbb) (molar code: Zn:Mn 1:1) (CCDC number: 1531901).

    table S15. Crystal data and structure refinement for Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1) (CCDC number: 1531926).

    table S16. Crystal data and structure refinement for Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2) (CCDC number: 1531924).

    table S17. Crystal data and structure refinement for Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4) (CCDC number: 1531922).

    table S18. Crystal data and structure refinement for Zn0.48Ca0.52(hfipbb) (molar code: Zn:Ca 1:10) (CCDC number: 1531909).

    table S19. Crystal data and structure refinement for Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1) (CCDC number: 1531925).

    table S20. Crystal data and structure refinement for Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4) (CCDC number: 1531907).

    table S21. Crystal data and structure refinement for Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8) (CCDC number: 1531908).

    table S22. Crystal data and structure refinement for Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1) (CCDC number: 1531913).

    table S23. Crystal data and structure refinement for Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1) (CCDC number: 1531910).

    table S24. Crystal data and structure refinement for Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1) (CCDC number: 1531905).

    table S25. Crystal data and structure refinement for Zn0.32Mn0.38Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2) (CCDC number: 1531904).

    table S26. Crystal data and structure refinement for Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8) (CCDC number: 1531900).

    table S27. Crystal data and structure refinement for Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9) (CCDC number: 1531906).

    table S28. Crystal data and structure refinement for Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1) (CCDC number: 1531917).

    table S29. Crystal data and structure refinement for Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8) (CCDC number: 1531911).

    table S30. Selected bond angles and interatomic lengths of the SBUs involved in the low-temperature magnetism of the MOFs obtained in the Zn:Co system.

    fig. S1. Thermogravimetric–differential thermal analysis (TG-DTA) curve for dried Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1).

    fig. S2. TG-DTA curve for dried Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).

    fig. S3. TG-DTA curve for dried Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4).

    fig. S4. TG-DTA curve for dried Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).

    fig. S5. TG-DTA curve for dried Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1).

    fig. S6. TG-DTA curve for dried Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1).

    fig. S7. TG-DTA curve for dried Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2).

    fig. S8. TG-DTA curve for dried Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).

    fig. S9. TG-DTA curve for dried Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10).

    fig. S10. TG-DTA curve for dried Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).

    fig. S11. TG-DTA curve for dried Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).

    fig. S12. TG-DTA curve for dried Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).

    fig. S13. TG-DTA curve for dried Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1).

    fig. S14. TG-DTA curve for dried Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).

    fig. S15. TG-DTA curve for dried Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).

    fig. S16. TG-DTA curve for dried Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).

    fig. S17. TG-DTA curve for dried Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8).

    fig. S18. TG-DTA curve for dried Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9).

    fig. S19. TG-DTA curve for dried Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).

    fig. S20. TG-DTA curve for dried Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8).

    fig. S21. Normalized powder XRD patterns of Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S22. Normalized powder XRD patterns of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S23. Normalized powder XRD patterns of Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S24. Normalized powder XRD patterns of Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S25. Normalized powder XRD patterns of Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S26. Normalized powder XRD patterns of Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S27. Normalized powder XRD patterns of Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S28. Normalized powder XRD patterns of Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S29. Normalized powder XRD patterns of Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S30. Normalized powder XRD patterns of Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S31. Normalized powder XRD patterns of Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S32. Normalized powder XRD patterns of Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S33. Normalized powder XRD patterns of Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S34. Normalized powder XRD patterns of Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S35. Normalized powder XRD patterns of Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S36. Normalized powder XRD patterns of Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S37. Normalized powder XRD patterns of Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S38. Normalized powder XRD patterns of Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S39. Normalized powder XRD patterns of Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S40. Normalized powder XRD patterns of Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).

    fig. S41. SEM image of Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1).

    fig. S42. SEM image of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).

    fig. S43. SEM image of Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4).

    fig. S44. SEM image of Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).

    fig. S45. SEM image of Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1).

    fig. S46. SEM image of Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2).

    fig. S47. SEM image of Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).

    fig. S48. SEM image of Zn0.48Ca0.52(hfipbb) (molar code: Zn:Ca 1:10).

    fig. S49. SEM image of Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1).

    fig. S50. SEM image of Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).

    fig. S51. SEM image of Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).

    fig. S52. SEM image of Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).

    fig. S53. SEM image of Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1).

    fig. S54. SEM image of Zn0.52Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).

    fig. S55. SEM image of Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).

    fig. S56. SEM image of Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).

    fig. S57. SEM image of Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8).

    fig. S58. SEM image of Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9).

    fig. S59. SEM image of Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).

    fig. S60. SEM image of Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8).

    fig. S61. SEM image corresponding to Zn0.89Co0.11(hfipbb) crystals (molar code: Zn:Co 1:1).

    fig. S62. SEM image corresponding to Zn0.59Co0.41(hfipbb) crystals (molar code: Zn:Co 1:2).

    fig. S63. SEM image corresponding to Zn0.55Co0.45(hfipbb) crystals (molar code: Zn:Co 1:4).

    fig. S64. SEM image corresponding to Zn0.21Co0.79(hfipbb) crystals (molar code: Zn:Co 1:10).

    fig. S65. SEM image corresponding to Zn0.50Mn0.50(hfipbb) crystals (molar code: Zn:Mn 1:1).

    fig. S66. SEM image corresponding to Zn0.096Ca0.04(hfipbb) crystals (molar code: Zn:Ca 1:1).

    fig. S67. SEM image corresponding to Zn0.94Ca0.06(hfipbb) crystals (molar code: Zn:Ca 1:2).

    fig. S68. SEM image corresponding to Zn0.64Ca0.36(hfipbb) crystals (molar code: Zn:Ca 1:4).

    fig. S69. SEM image corresponding to Zn0.52Ca0.48(hfipbb) crystals (molar code: Zn:Ca 1:10).

    fig. S70. SEM image corresponding to Zn0.72Co0.17Ca0.11(hfipbb) crystals (molar code: Zn:Co:Ca 1:1:1).

    fig. S71. SEM image corresponding to Zn0.33Co0.37Ca0.30(hfipbb) crystals (molar code: Zn:Co:Ca 1:4:4).

    fig. S72. SEM image corresponding to Zn0.37Co0.14Ca0.49(hfipbb) crystals (molar code: Zn:Co:Ca 1:1:8).

    fig. S73. SEM image corresponding to Zn0.44Mn0.44Co0.12(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:1).

    fig. S74. SEM image corresponding to Zn0.54Mn0.37Co0.09(hfipbb) crystals (molar code: Zn:Mn:Co 2:1:1).

    fig. S75. SEM image corresponding to Zn0.37Mn0.50Co0.13(hfipbb) crystals (molar code: Zn:Mn:Co 1:2:1).

    fig. S76. SEM image corresponding to Zn0.32Mn0.39Co0.28(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:2).

    fig. S77. SEM image corresponding to Zn0.22Mn0.32Co0.46(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:8).

    fig. S78. SEM image corresponding to Zn0.12Mn0.42Co0.46(hfipbb) crystals (molar code: Zn:Mn:Co 1:3:9).

    fig. S79. SEM image corresponding to Zn0.48Mn0.42Ca0.10(hfipbb) crystals (molar code: Zn:Mn:Ca 1:1:1).

    fig. S80. SEM image corresponding to Zn0.52Mn0.30Ca0.18(hfipbb) crystals (molar code: Zn:Mn:Ca 1:1:8).

    fig. S81. Normalized Zn and Co atomic ratio versus reaction time in kinetic study of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).

    fig. S82. Reaction yield versus reaction time in kinetic study of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).

    fig. S83. Variable temperature NPD for Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).

    fig. S84. Variable temperature NPD for Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).

    fig. S85. Variable temperature NPD for Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).

    fig. S86. Variable temperature NPD for Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10).

    fig. S87. Variable temperature NPD for Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).

    fig. S88. Variable temperature NPD for Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).

    fig. S89. Variable temperature NPD for Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).

    fig. S90. Variable temperature NPD for Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).

    fig. S91. Variable temperature NPD for Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).

    fig. S92. Variable temperature NPD for Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).

    fig. S93. Variable temperature NPD for Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).

    fig. S94. ΔEForm for the pure and bimetallic structures normalized to the most stable one.

    fig. S95. Partial view of the crystal structure of the helical, rod-shaped inorganic chains built up with alternating tetrahedral and octahedral metal polyhedrons.

    fig. S96. Low-temperature dependence of the product temperature by real component (left y axis) and imaginary component (right y axis) of the ac magnetic susceptibility obtained for the MOF with formula Zn0.59Co0.41(hfipbb).

    fig. S97. Magnetic field dependence of the virgin magnetization curves for Zn0.59Co0.41(hfipbb).

    fig. S98. Low–magnetic field region of hysteresis loops measured at 2 K (circles), 15 K (diamonds), and 30 K (hexagons) for the MOF with formula Zn0.59Co0.41(hfipbb).

    fig. S99. Thermal variation of dc magnetic susceptibility measured in an applied field of 5 mT for the MOF with formula Zn0.59Co0.41(hfipbb).

    fig. S100. Low-temperature dependence of the product temperature by ac magnetic susceptibility (left y axis) and temperature by the imaginary component (right y axis) of the ac magnetic susceptibility obtained for the MOF with formula Zn0.21Co0.79(hfipbb).

    fig. S101. Magnetic field dependence of the virgin magnetization curves for Zn0.21Co0.79(hfipbb).

    fig. S102. Low–magnetic field region of hysteresis loops measured at 2 K (black line), 30 K (red line), and 35 K (blue line) for the MOF with formula Zn0.21Co0.79(hfipbb).

    fig. S103. Thermal variation of magnetic susceptibility for Zn0.21Co0.79(hfipbb).

  • Supplementary Materials

    This PDF file includes:

    • Supplementary Text
    • section S1. Synthesis and characterization
    • section S2. X-ray diffraction
    • section S3. SEM and EDS analyses
    • section S4. Kinetic study of Zn0.59Co0.41(hfipbb)
    • section S5. Neutron powder diffraction
    • section S6. DFT calculations
    • section S7. Magnetic susceptibility measurements
    • table S1. Chemical formula and corresponding molar codes and amount of metal salts used for MOF preparation.
    • table S2. Results of carbon, hydrogen, and nitrogen analyses and ICP analyses in %weight for all MOFs.
    • table S3. Crystal and refinement details for Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1) [Cambridge Crystallographic Data Centre (CCDC) number: 1531921].
    • table S4. Crystal data and structure refinement for Zn0.89Co0.11(hfipbb) at 100 K (molar code: Zn:Co 1:1) (CCDC number: 1531920).
    • table S5. Crystal and refinement details for Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2) (CCDC number: 1531914).
    • table S6. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 200 K (molar code: Zn:Co 1:2) (CCDC number: 1531918).
    • table S7. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 150 K (molar code: Zn:Co 1:2) (CCDC number: 1531919).
    • table S8. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 100 K (molar code: Zn:Co 1:2) (CCDC number: 1531923).
    • table S9. Crystal data and structure refinement for Zn0.59Co0.41(hfipbb) at 50 K (molar code: Zn:Co 1:2) (CCDC number: 1531915).
    • table S10. Crystal data and structure refinement for Zn0.55Co0.45(hfipbb) at room temperature (molar code: Zn:Co 1:4) (CCDC number: 1531916).
    • table S11. Crystal data and structure refinement for Zn0.55Co0.45(hfipbb) at 100 K (molar code: Zn:Co 1:4) (CCDC number: 1531912).
    • table S12. Crystal data and structure refinement for Zn0.21Co0.79(hfipbb) at room temperature (molar code: Zn:Co 1:10) (CCDC number: 1531902).
    • table S13. Crystal data and structure refinement for Zn0.21Co0.79(hfipbb) at 100 K (molar code: Zn:Co 1:10) (CCDC number: 1531903).
    • table S14. Crystal data and structure refinement for Zn0.50Mn0.5(hfipbb) (molar code: Zn:Mn 1:1) (CCDC number: 1531901).
    • table S15. Crystal data and structure refinement for Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1) (CCDC number: 1531926).
    • table S16. Crystal data and structure refinement for Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2) (CCDC number: 1531924).
    • table S17. Crystal data and structure refinement for Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4) (CCDC number: 1531922).
    • table S18. Crystal data and structure refinement for Zn0.48Ca0.52(hfipbb) (molar code: Zn:Ca 1:10) (CCDC number: 1531909).
    • table S19. Crystal data and structure refinement for Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1) (CCDC number: 1531925).
    • table S20. Crystal data and structure refinement for Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4) (CCDC number: 1531907).
    • table S21. Crystal data and structure refinement for Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8) (CCDC number: 1531908).
    • table S22. Crystal data and structure refinement for Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1) (CCDC number: 1531913).
    • table S23. Crystal data and structure refinement for Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1) (CCDC number: 1531910).
    • table S24. Crystal data and structure refinement for Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1) (CCDC number: 1531905).
    • table S25. Crystal data and structure refinement for Zn0.32Mn0.38Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2) (CCDC number: 1531904).
    • table S26. Crystal data and structure refinement for Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8) (CCDC number: 1531900).
    • table S27. Crystal data and structure refinement for Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9) (CCDC number: 1531906).
    • table S28. Crystal data and structure refinement for Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1) (CCDC number: 1531917).
    • table S29. Crystal data and structure refinement for Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8) (CCDC number: 1531911).
    • table S30. Selected bond angles and interatomic lengths of the SBUs involved in the low-temperature magnetism of the MOFs obtained in the Zn:Co system.
    • fig. S1. Thermogravimetric–differential thermal analysis (TG-DTA) curve for dried Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1).
    • fig. S2. TG-DTA curve for dried Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).
    • fig. S3. TG-DTA curve for dried Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4).
    • fig. S4. TG-DTA curve for dried Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).
    • fig. S5. TG-DTA curve for dried Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1).
    • fig. S6. TG-DTA curve for dried Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1).
    • fig. S7. TG-DTA curve for dried Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2).
    • fig. S8. TG-DTA curve for dried Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).
    • fig. S9. TG-DTA curve for dried Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10).
    • fig. S10. TG-DTA curve for dried Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).
    • fig. S11. TG-DTA curve for dried Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).
    • fig. S12. TG-DTA curve for dried Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).
    • fig. S13. TG-DTA curve for dried Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1).
    • fig. S14. TG-DTA curve for dried Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).
    • fig. S15. TG-DTA curve for dried Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).
    • fig. S16. TG-DTA curve for dried Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).
    • fig. S17. TG-DTA curve for dried Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8).
    • fig. S18. TG-DTA curve for dried Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9).
    • fig. S19. TG-DTA curve for dried Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).
    • fig. S20. TG-DTA curve for dried Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8).
    • fig. S21. Normalized powder XRD patterns of Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S22. Normalized powder XRD patterns of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S23. Normalized powder XRD patterns of Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S24. Normalized powder XRD patterns of Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S25. Normalized powder XRD patterns of Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S26. Normalized powder XRD patterns of Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S27. Normalized powder XRD patterns of Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S28. Normalized powder XRD patterns of Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S29. Normalized powder XRD patterns of Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S30. Normalized powder XRD patterns of Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S31. Normalized powder XRD patterns of Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S32. Normalized powder XRD patterns of Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S33. Normalized powder XRD patterns of Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S34. Normalized powder XRD patterns of Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S35. Normalized powder XRD patterns of Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S36. Normalized powder XRD patterns of Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S37. Normalized powder XRD patterns of Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S38. Normalized powder XRD patterns of Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S39. Normalized powder XRD patterns of Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S40. Normalized powder XRD patterns of Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8): Experimental (black), calculated (blue), and Bragg positions (green).
    • fig. S41. SEM image of Zn0.89Co0.11(hfipbb) (molar code: Zn:Co 1:1).
    • fig. S42. SEM image of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).
    • fig. S43. SEM image of Zn0.55Co0.45(hfipbb) (molar code: Zn:Co 1:4).
    • fig. S44. SEM image of Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).
    • fig. S45. SEM image of Zn0.96Ca0.04(hfipbb) (molar code: Zn:Ca 1:1).
    • fig. S46. SEM image of Zn0.94Ca0.06(hfipbb) (molar code: Zn:Ca 1:2).
    • fig. S47. SEM image of Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).
    • fig. S48. SEM image of Zn0.48Ca0.52(hfipbb) (molar code: Zn:Ca 1:10).
    • fig. S49. SEM image of Zn0.50Mn0.50(hfipbb) (molar code: Zn:Mn 1:1).
    • fig. S50. SEM image of Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).
    • fig. S51. SEM image of Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).
    • fig. S52. SEM image of Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).
    • fig. S53. SEM image of Zn0.44Mn0.44Co0.12(hfipbb) (molar code: Zn:Mn:Co 1:1:1).
    • fig. S54. SEM image of Zn0.52Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).
    • fig. S55. SEM image of Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).
    • fig. S56. SEM image of Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).
    • fig. S57. SEM image of Zn0.22Mn0.32Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:1:8).
    • fig. S58. SEM image of Zn0.12Mn0.42Co0.46(hfipbb) (molar code: Zn:Mn:Co 1:3:9).
    • fig. S59. SEM image of Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).
    • fig. S60. SEM image of Zn0.52Mn0.30Ca0.18(hfipbb) (molar code: Zn:Mn:Ca 1:1:8).
    • fig. S61. SEM image corresponding to Zn0.89Co0.11(hfipbb) crystals (molar code: Zn:Co 1:1).
    • fig. S62. SEM image corresponding to Zn0.59Co0.41(hfipbb) crystals (molar code: Zn:Co 1:2).
    • fig. S63. SEM image corresponding to Zn0.55Co0.45(hfipbb) crystals (molar code: Zn:Co 1:4).
    • fig. S64. SEM image corresponding to Zn0.21Co0.79(hfipbb) crystals (molar code: Zn:Co 1:10).
    • fig. S65. SEM image corresponding to Zn0.50Mn0.50(hfipbb) crystals (molar code: Zn:Mn 1:1).
    • fig. S66. SEM image corresponding to Zn0.96Ca0.04(hfipbb) crystals (molar code: Zn:Ca 1:1).
    • fig. S67. SEM image corresponding to Zn0.94Ca0.06(hfipbb) crystals (molar code: Zn:Ca 1:2).
    • fig. S68. SEM image corresponding to Zn0.64Ca0.36(hfipbb) crystals (molar code: Zn:Ca 1:4).
    • fig. S69. SEM image corresponding to Zn0.52Ca0.48(hfipbb) crystals (molar code: Zn:Ca 1:10).
    • fig. S70. SEM image corresponding to Zn0.72Co0.17Ca0.11(hfipbb) crystals (molar code: Zn:Co:Ca 1:1:1).
    • fig. S71. SEM image corresponding to Zn0.33Co0.37Ca0.30(hfipbb) crystals (molar code: Zn:Co:Ca 1:4:4).
    • fig. S72. SEM image corresponding to Zn0.37Co0.14Ca0.49(hfipbb) crystals (molar code: Zn:Co:Ca 1:1:8).
    • fig. S73. SEM image corresponding to Zn0.44Mn0.44Co0.12(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:1).
    • fig. S74. SEM image corresponding to Zn0.54Mn0.37Co0.09(hfipbb) crystals (molar code: Zn:Mn:Co 2:1:1).
    • fig. S75. SEM image correspond
    • fig. S76. SEM image corresponding to Zn0.32Mn0.39Co0.28(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:2).
    • fig. S77. SEM image corresponding to Zn0.22Mn0.32Co0.46(hfipbb) crystals (molar code: Zn:Mn:Co 1:1:8).
    • fig. S78. SEM image corresponding to Zn0.12Mn0.42Co0.46(hfipbb) crystals (molar code: Zn:Mn:Co 1:3:9).
    • fig. S79. SEM image corresponding to Zn0.48Mn0.42Ca0.10(hfipbb) crystals (molar code: Zn:Mn:Ca 1:1:1).
    • fig. S80. SEM image corresponding to Zn0.52Mn0.30Ca0.18(hfipbb) crystals (molar code: Zn:Mn:Ca 1:1:8).
    • fig. S81. Normalized Zn and Co atomic ratio versus reaction time in kinetic study of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).
    • fig. S82. Reaction yield versus reaction time in kinetic study of Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).
    • fig. S83. Variable temperature NPD for Zn0.59Co0.41(hfipbb) (molar code: Zn:Co 1:2).
    • fig. S84. Variable temperature NPD for Zn0.21Co0.79(hfipbb) (molar code: Zn:Co 1:10).
    • fig. S85. Variable temperature NPD for Zn0.64Ca0.36(hfipbb) (molar code: Zn:Ca 1:4).
    • fig. S86. Variable temperature NPD for Zn0.52Ca0.48(hfipbb) (molar code: Zn:Ca 1:10).
    • fig. S87. Variable temperature NPD for Zn0.72Co0.17Ca0.11(hfipbb) (molar code: Zn:Co:Ca 1:1:1).
    • fig. S88. Variable temperature NPD for Zn0.33Co0.37Ca0.30(hfipbb) (molar code: Zn:Co:Ca 1:4:4).
    • fig. S89. Variable temperature NPD for Zn0.37Co0.14Ca0.49(hfipbb) (molar code: Zn:Co:Ca 1:1:8).
    • fig. S90. Variable temperature NPD for Zn0.54Mn0.37Co0.09(hfipbb) (molar code: Zn:Mn:Co 2:1:1).
    • fig. S91. Variable temperature NPD for Zn0.37Mn0.50Co0.13(hfipbb) (molar code: Zn:Mn:Co 1:2:1).
    • fig. S92. Variable temperature NPD for Zn0.32Mn0.39Co0.28(hfipbb) (molar code: Zn:Mn:Co 1:1:2).
    • fig. S93. Variable temperature NPD for Zn0.48Mn0.42Ca0.10(hfipbb) (molar code: Zn:Mn:Ca 1:1:1).
    • fig. S94. ΔEForm for the pure and bimetallic structures normalized to the most stable one.
    • fig. S95. Partial view of the crystal structure of the helical, rod-shaped inorganic chains built up with alternating tetrahedral and octahedral metal polyhedrons.
    • fig. S96. Low-temperature dependence of the product temperature by real component (left y axis) and imaginary component (right y axis) of the ac magnetic susceptibility obtained for the MOF with formula Zn0.59Co0.41(hfipbb).
    • fig. S97. Magnetic field
    • fig. S98. Low–magnetic field region of hysteresis loops measured at 2 K (circles), 15 K (diamonds), and 30 K (hexagons) for the MOF with formula Zn0.59Co0.41(hfipbb).
    • fig. S99. Thermal variation of dc magnetic susceptibility measured in an applied field of 5 mT for the MOF with formula Zn0.59Co0.41(hfipbb).
    • fig. S100. Low-temperature dependence of the product temperature by ac magnetic susceptibility (left y axis) and temperature by the imaginary component (right y axis) of the ac magnetic susceptibility obtained for the MOF with formula Zn0.21Co0.79(hfipbb).
    • fig. S101. Magnetic field dependence of the virgin magnetization curves for Zn0.21Co0.79(hfipbb).
    • fig. S102. Low–magnetic field region of hysteresis loops measured at 2 K (black line), 30 K (red line), and 35 K (blue line) for the MOF with formula Zn0.21Co0.79(hfipbb).
    • fig. S103. Thermal variation of magnetic susceptibility for Zn0.21Co0.79(hfipbb).

    [Download PDF]

    Other Supplementary Material for this manuscript includes the following:

    Files in this Data Supplement: