Research ArticleChemistry

On/off switchable electronic conduction in intercalated metal-organic frameworks

See allHide authors and affiliations

Science Advances  25 Aug 2017:
Vol. 3, no. 8, e1603103
DOI: 10.1126/sciadv.1603103

You are currently viewing the abstract.

View Full Text

Abstract

The electrical properties of metal-organic frameworks (MOF) have attracted attention for MOF as electronic materials. We report on/off switchable electronic conduction behavior with thermal responsiveness in intercalated MOF (iMOF) with layered structure, 2,6-naphthalene dicarboxylate dilithium, which was previously reported as a reversible Li-intercalation electrode material. The I-V response of the intercalated sample, which was prepared using a chemically reductive lithiation agent, exhibits current flow with sufficiently high electronic conductivity, even though it displays insulating characteristics in the pristine state. Calculations of band structure and electron hopping conduction indicate that electronic conduction occurs in the two-dimensional π-stacking naphthalene layers when the band gap is decreased to 0.99 eV and because of the formation of an anisotropic electron hopping conduction pathway by Li intercalation. The structure exhibiting electronic conductivity remains stable up to 200°C and reverts to an insulating structure, without collapsing, at 400°C, offering the potential for a shutdown switch for battery safety during thermal runaway or for heat-responsive on/off switching electronic devices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text