Heat conduction tuning by wave nature of phonons

See allHide authors and affiliations

Science Advances  04 Aug 2017:
Vol. 3, no. 8, e1700027
DOI: 10.1126/sciadv.1700027

You are currently viewing the abstract.

View Full Text


The world communicates to our senses of vision, hearing, and touch in the language of waves, because light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively investigated over the past century and is now widely used in modern technology. However, the wave nature of heat has been the subject of mostly theoretical studies because its experimental demonstration, let alone practical use, remains challenging due to its extremely short wavelengths. We show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding expands the methodology of heat transfer engineering to the wave nature of heat.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text