Research ArticleENGINEERING

Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells

See allHide authors and affiliations

Science Advances  23 Aug 2017:
Vol. 3, no. 8, e1700106
DOI: 10.1126/sciadv.1700106

You are currently viewing the abstract.

View Full Text

Abstract

The solution processing of polycrystalline perovskite films introduces trap states that can adversely affect their optoelectronic properties. Motivated by the use of small-molecule surfactants to improve the optoelectronic performance of perovskites, we demonstrate the use of polymers with coordinating groups to improve the performance of solution-processed semiconductor films. The use of these polymer modifiers results in a marked change in the electronic properties of the films, as measured by both carrier dynamics and overall device performance. The devices grown with the polymer poly(4-vinylpyridine) (PVP) show significantly enhanced power conversion efficiency from 16.9 ± 0.7% to 18.8 ± 0.8% (champion efficiency, 20.2%) from a reverse scan and stabilized champion efficiency from 17.5 to 19.1% [under a bias of 0.94 V and AM (air mass) 1.5-G, 1-sun illumination over 30 min] compared to controls without any passivation. Treating the perovskite film with PVP enables a VOC of up to 1.16 V, which is among the best reported for a CH3NH3PbI3 perovskite solar cell and one of the lowest voltage deficits reported for any perovskite to date. In addition, perovskite solar cells treated with PVP show a long shelf lifetime of up to 90 days (retaining 85% of the initial efficiency) and increased by a factor of more than 20 compared to those without any polymer (degrading to 85% after ~4 days). Our work opens up a new class of chemical additives for improving perovskite performance and should pave the way toward improving perovskite solar cells for high efficiency and stability.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text