Technical CommentsSeismology

Comment on “How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?” by C. Langenbruch and M. D. Zoback

+ See all authors and affiliations

Science Advances  09 Aug 2017:
Vol. 3, no. 8, e1700441
DOI: 10.1126/sciadv.1700441

You are currently viewing the abstract.

View Full Text

Abstract

The state of Oklahoma has experienced an unprecedented increase in earthquake activity since 2009, likely driven by large-scale wastewater injection operations. Statewide injection rates peaked in early 2015 and steadily decreased thereafter, approximately coinciding with collapsing oil prices and regulatory action. If seismic activity is primarily driven by fluid injection, a noticeable seismogenic response to the decrease in injection rates is expected. Langenbruch and Zoback suggest that “the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years.” We agree that the rate of small earthquakes has decreased toward the second half of 2016. However, their specific predictions about seismic hazard require reexamination. We test the influence of the model parameters of Langenbruch and Zoback based on fits to observed seismicity distributions. The results suggest that a range of realistic aftershock decay rates and b values can lead to an increase in moderate earthquake probabilities from 37 to 80% in 2017 without any further alteration to the model. In addition, the observation that all four M ≥ 5 earthquakes to date occurred when injection rates were below the triggering threshold of Langenbruch and Zoback challenges the applicability of the model for the most societally significant events.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text