Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center

See allHide authors and affiliations

Science Advances  06 Sep 2017:
Vol. 3, no. 9, e1603141
DOI: 10.1126/sciadv.1603141

You are currently viewing the abstract.

View Full Text


Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. On the basis of spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion depends critically on the assignment of the coherences to the evolution of excitonic superpositions. We demonstrate that, for a bacterial reaction center protein, long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited-state coherences shifted to the ground state of the chromophores. We show that the appearance of these coherences arises from a release of electronic energy during energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction center, and they call for a reexamination of claims of quantum energy transfer in photosynthesis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text