Research ArticleDISEASE PREVENTION

PAI-1 is a critical regulator of FGF23 homeostasis

See allHide authors and affiliations

Science Advances  13 Sep 2017:
Vol. 3, no. 9, e1603259
DOI: 10.1126/sciadv.1603259

You are currently viewing the abstract.

View Full Text

Abstract

Elevated levels of fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone, are associated with a number of pathologic conditions including chronic kidney disease, cardiac hypertrophy, and congestive heart failure. Currently, there are no specific treatments available to lower plasma FGF23 levels. We have recently reported that genetic plasminogen activator inhibitor–1 (PAI-1) deficiency provided a significant reduction in circulating FGF23 levels while simultaneously prolonging the life span of Klotho-deficient mice. We extend our investigations into the effect of PAI-1 on FGF23 homeostasis. Transgenic overexpression of PAI-1 resulted in threefold increase in FGF23 levels compared to wild-type littermates. Moreover, pharmacological modulation of PAI-1 activity with the small-molecule PAI-1 antagonist TM5441 significantly reduced FGF23 levels in PAI-1 transgenic and Klotho-deficient mice. In addition, TM5441 treatment or PAI-1 deficiency significantly accelerated the clearance of endogenous FGF23 and recombinant human FGF23 from circulation in mice with acute kidney injury. On the basis of these observations, we studied the effects of plasminogen activators (PAs), tissue-type PA (tPA) and urokinase-type PA (uPA), on FGF23. We demonstrate that both PAs directly cleave FGF23; however, it is not known whether the PA-generated FGF23 peptides retain or acquire functions that affect binding and/or signaling properties of intact FGF23. PAI-1 inhibits the PA-dependent cleavage of FGF23, and TM5441 inhibition of PAI-1 restores the proteolysis of FGF23. Furthermore, top-down proteomic analysis indicates that tPA cleaves FGF23 at multiple arginines including the proconvertase sensitive site R176. In summary, our results indicate that PAI-1 prevents the PA-driven proteolysis of FGF23 and PAI-1 inhibition provides a novel therapeutic approach to prevent the pathologic consequences of increased FGF23.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text