Research ArticleOPTICS

Low-threshold parametric oscillation in organically modified microcavities

See allHide authors and affiliations

Science Advances  05 Jan 2018:
Vol. 4, no. 1, eaao4507
DOI: 10.1126/sciadv.aao4507

You are currently viewing the abstract.

View Full Text


Coherent frequency generators are an enabling platform in basic science and applied technology. Originally reliant on high-power lasers, recently comb generation has been demonstrated in ultrahigh-Q microcavities. The large circulating intensity within the cavity results in strong light-matter interaction, giving rise to Kerr parametric oscillations for comb generation. However, the comb generation threshold is limited by competing nonlinear effects within the cavity material and low intrinsic material Kerr coefficients. We report a new strategy to fabricate near-infrared frequency combs based on combining high-Q microcavities with monomolecular layers of highly nonlinear small molecules. The functionalized microcavities demonstrate high-efficiency parametric oscillation in the near-IR and generate primary frequency combs with 0.88-mW thresholds, improving optical parametric oscillation generation over nonfunctionalized devices by three orders of magnitude. This organic-inorganic approach enables otherwise unattainable performance and will inspire the next generation of integrated photonic device platforms.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text