Research ArticlePHYSICS

Magnetic and defect probes of the SmB6 surface state

See allHide authors and affiliations

Science Advances  09 Nov 2018:
Vol. 4, no. 11, eaau4886
DOI: 10.1126/sciadv.aau4886

Abstract

The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB6, a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text