Research ArticleCONDENSED MATTER PHYSICS

Magnetism in semiconducting molybdenum dichalcogenides

See allHide authors and affiliations

Science Advances  21 Dec 2018:
Vol. 4, no. 12, eaat3672
DOI: 10.1126/sciadv.aat3672

Abstract

Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below TM = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin rotation (μSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The μSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites, which are randomly distributed in the lattice at the subpercent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9 to 2.8 μB. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and open a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text