Research ArticlePHYSICS

Phonon localization in heat conduction

See allHide authors and affiliations

Science Advances  21 Dec 2018:
Vol. 4, no. 12, eaat9460
DOI: 10.1126/sciadv.aat9460

Abstract

Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Greenșs function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text