Research ArticleAPPLIED PHYSICS

New bounds on dark matter coupling from a global network of optical atomic clocks

See allHide authors and affiliations

Science Advances  07 Dec 2018:
Vol. 4, no. 12, eaau4869
DOI: 10.1126/sciadv.aau4869

Abstract

We report on the first Earth-scale quantum sensor network based on optical atomic clocks aimed at dark matter (DM) detection. Exploiting differences in the susceptibilities to the fine-structure constant of essential parts of an optical atomic clock, i.e., the cold atoms and the optical reference cavity, we can perform sensitive searches for DM signatures without the need for real-time comparisons of the clocks. We report a two orders of magnitude improvement in constraints on transient variations of the fine-structure constant, which considerably improves the detection limit for the standard model (SM)–DM coupling. We use Yb and Sr optical atomic clocks at four laboratories on three continents to search for both topological defect and massive scalar field candidates. No signal consistent with a DM coupling is identified, leading to considerably improved constraints on the DM-SM couplings.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text