Internal strain tunes electronic correlations on the nanoscale

See allHide authors and affiliations

Science Advances  14 Dec 2018:
Vol. 4, no. 12, eaau9123
DOI: 10.1126/sciadv.aau9123


In conventional metals, charge carriers basically move freely. In correlated electron materials, however, the electrons may become localized because of strong Coulomb interactions, resulting in an insulating state. Despite considerable progress in the last decades, elucidating the driving mechanisms that suppress metallic charge transport, the spatial evolution of this phase transition remains poorly understood on a microscopic scale. Here, we use cryogenic scanning near-field optical microscopy to study the metal-to-insulator transition in an electronically driven charge-ordered system with a 20-nm spatial resolution. In contrast to common mean-field considerations, we observe pronounced phase segregation with a sharp boundary between metallic and insulating regions evidencing its first-order nature. Considerable strain in the crystal spatially modulates the effective electronic correlations within a few micrometers, leading to an extended “zebra” pattern of metallic and insulating stripes. We can directly monitor the spatial strain distribution via a gradual enhancement of the optical conductivity as the energy gap is depressed. Our observations shed new light on previous analyses of correlation-driven metal-insulator transitions.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text