Optimal structure and parameter learning of Ising models

See allHide authors and affiliations

Science Advances  16 Mar 2018:
Vol. 4, no. 3, e1700791
DOI: 10.1126/sciadv.1700791

You are currently viewing the abstract.

View Full Text


Reconstruction of the structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted toward developing universal reconstruction algorithms that are both computationally efficient and require the minimal amount of expensive data. We introduce a new method, interaction screening, which accurately estimates model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime, which is known to be the hardest for learning. The efficacy of interaction screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on real data produced by a D-Wave quantum computer. This study shows that the interaction screening method is an exact, tractable, and optimal technique that universally solves the inverse Ising problem.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text