A metal-organic framework with ultrahigh glass-forming ability

See allHide authors and affiliations

Science Advances  09 Mar 2018:
Vol. 4, no. 3, eaao6827
DOI: 10.1126/sciadv.aao6827

You are currently viewing the abstract.

View Full Text


Glass-forming ability (GFA) is the ability of a liquid to avoid crystallization during cooling. Metal-organic frameworks (MOFs) are a new class of glass formers (13), with hitherto unknown dynamic and thermodynamic properties. We report the discovery of a new series of tetrahedral glass systems, zeolitic imidazolate framework–62 (ZIF-62) [Zn(Im2−xbImx)], which have ultrahigh GFA, superior to any other known glass formers. This ultrahigh GFA is evidenced by a high viscosity η (105 Pa·s) at the melting temperature Tm, a large crystal-glass network density deficit (Δρ/ρg)network, no crystallization in supercooled region on laboratory time scales, a low fragility (m = 23), an extremely high Poisson’s ratio (ν = 0.45), and the highest Tg/Tm ratio (0.84) ever reported. Tm and Tg both increase with benzimidazolate (bIm) content but retain the same ultrahigh Tg/Tm ratio, owing to high steric hindrance and frustrated network dynamics and also to the unusually low enthalpy and entropy typical of the soft and flexible nature of MOFs. On the basis of these versatile properties, we explain the exceptional GFA of the ZIF-62 system.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text