Research ArticleMATERIALS SCIENCE

Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions

See allHide authors and affiliations

Science Advances  30 Mar 2018:
Vol. 4, no. 3, eaar3296
DOI: 10.1126/sciadv.aar3296

You are currently viewing the abstract.

View Full Text

Abstract

The viscosity of suspensions of large (≥10 μm) particles diverges at high solid fractions due to proliferation of frictional particle contacts. Reducing friction, to allow or improve flowability, is usually achieved by tuning the composition, either by changing particle sizes and shapes or by adding lubricating molecules. We present numerical simulations that demonstrate a complementary approach whereby the viscosity divergence is shifted by driven flow tuning, using superimposed shear oscillations in various configurations to facilitate a primary flow. The oscillations drive the suspension toward an out-of-equilibrium, absorbing state phase transition, where frictional particle contacts that dominate the viscosity are reduced in a self-organizing manner. The method can allow otherwise jammed states to flow; even for unjammed states, it can substantially decrease the energy dissipated per unit strain. This creates a practicable route to flow enhancement across a broad range of suspensions where compositional tuning is undesirable or problematic.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text