Research ArticleOCEANOGRAPHY

Bioinspired polarization vision enables underwater geolocalization

See allHide authors and affiliations

Science Advances  04 Apr 2018:
Vol. 4, no. 4, eaao6841
DOI: 10.1126/sciadv.aao6841

You are currently viewing the abstract.

View Full Text


With its never-ending blue color, the underwater environment often seems monotonic and featureless. However, to an animal with polarization-sensitive vision, it is anything but bland. The rich repertoire of underwater polarization patterns—a consequence of light’s air-to-water transmission and in-water scattering—can be exploited both as a compass and for geolocalization purposes. We demonstrate that, by using a bioinspired polarization-sensitive imager, we can determine the geolocation of an observer based on radial underwater polarization patterns. Our experimental data, recorded at various locations around the world, at different depths and times of day, indicate that the average accuracy of our geolocalization is 61 km, or 6 m of error for every 1 km traveled. This proof-of-concept study of our bioinspired technique opens new possibilities in long-distance underwater navigation and suggests additional mechanisms by which marine animals with polarization-sensitive vision might perform both local and long-distance navigation.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text