Research ArticleAPPLIED SCIENCES AND ENGINEERING

Large, nonsaturating thermopower in a quantizing magnetic field

See allHide authors and affiliations

Science Advances  25 May 2018:
Vol. 4, no. 5, eaat2621
DOI: 10.1126/sciadv.aat2621

You are currently viewing the abstract.

View Full Text

Abstract

The thermoelectric effect is the generation of an electrical voltage from a temperature gradient in a solid material due to the diffusion of free charge carriers from hot to cold. Identifying materials with a large thermoelectric response is crucial for the development of novel electric generators and coolers. We theoretically consider the thermopower of Dirac/Weyl semimetals subjected to a quantizing magnetic field. We contrast their thermoelectric properties with those of traditional heavily doped semiconductors and show that, under a sufficiently large magnetic field, the thermopower of Dirac/Weyl semimetals grows linearly with the field without saturation and can reach extremely high values. Our results suggest an immediate pathway for achieving record-high thermopower and thermoelectric figure of merit, and they compare well with a recent experiment on Pb1–xSnxSe.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text