Research ArticleELECTROCHEMISTRY

Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions

See allHide authors and affiliations

Science Advances  15 Jun 2018:
Vol. 4, no. 6, eaap9360
DOI: 10.1126/sciadv.aap9360

You are currently viewing the abstract.

View Full Text

Abstract

Highly active and durable bifunctional oxygen electrocatalysts have been of pivotal importance for renewable energy conversion and storage devices, such as unitized regenerative fuel cells and metal-air batteries. Perovskite-based oxygen electrocatalysts have emerged as promising nonprecious metal bifunctional electrocatalysts, yet their catalytic activity and stability still remain to be improved. We report a high-performance oxygen electrocatalyst based on a triple perovskite, Nd1.5Ba1.5CoFeMnO9−δ (NBCFM), which shows superior activity and durability for oxygen electrode reactions to single and double perovskites. When hybridized with nitrogen-doped reduced graphene oxide (N-rGO), the resulting NBCFM/N-rGO catalyst shows further boosted bifunctional oxygen electrode activity (0.698 V), which surpasses that of Pt/C (0.801 V) and Ir/C (0.769 V) catalysts and which, among the perovskite-based electrocatalysts, is the best activity reported to date. The superior catalytic performances of NBCFM could be correlated to its oxygen defect–rich structure, lower charge transfer resistance, and smaller hybridization strength between O 2p and Co 3d orbitals.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text