Research ArticleCHEMICAL PHYSICS

Sequencing conjugated polymers by eye

See allHide authors and affiliations

Science Advances  15 Jun 2018:
Vol. 4, no. 6, eaas9543
DOI: 10.1126/sciadv.aas9543

You are currently viewing the abstract.

View Full Text

Abstract

The solid-state microstructure of a conjugated polymer is the most important parameter determining its properties and performance in (opto)-electronic devices. A huge amount of research has been dedicated to tuning and understanding how the sequence of monomers, the nature and frequency of defects, the exact backbone conformation, and the assembly and crystallinity of conjugated polymers affect their basic photophysics and charge transporting properties. However, because of the lack of reliable high-resolution analytical techniques, all the structure-property relations proposed in the literature are based either on molecular modeling or on indirect experimental data averaged on polydisperse samples. We show that a combination of electrospray vacuum deposition and high-resolution scanning tunneling microscopy allows the imaging of individual conjugated polymers with unprecedented detail, thereby unraveling structural and self-assembly characteristics that have so far been impossible to determine.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text