Research ArticleMATERIALS SCIENCE

A general printing approach for scalable growth of perovskite single-crystal films

See allHide authors and affiliations

Science Advances  29 Jun 2018:
Vol. 4, no. 6, eaat2390
DOI: 10.1126/sciadv.aat2390

You are currently viewing the abstract.

View Full Text

Abstract

Perovskite single-crystal films, which exhibit exceptionally low trap density and nearly perfect translational symmetry, are believed to achieve the highest performance of perovskite-based optoelectronic devices. However, fabrication of these perovskite single-crystal films is quite difficult because of the uncontrollable nucleation caused by the rapid reaction of two perovskite precursors. We report a facile seed printing approach to selectively create millimeter-sized perovskite single-crystal films with controlled thickness and high yield. We show that perovskite single-crystal films can be perfectly transferred to almost arbitrary substrates through the printing process. The as-grown perovskite single-crystal films have excellent crystalline quality and morphology. We further demonstrate that perovskite single-crystal films can be directly printed for scalable fabrication of photodetectors and effective image sensors. This strategy allows high-yield fabrication of large perovskite single-crystal films for functional devices and may extend to other solution-processed materials for wide applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text