Research ArticlePHYSICS

Observation of Poiseuille flow of phonons in black phosphorus

See allHide authors and affiliations

Science Advances  22 Jun 2018:
Vol. 4, no. 6, eaat3374
DOI: 10.1126/sciadv.aat3374

You are currently viewing the abstract.

View Full Text


The travel of heat in insulators is commonly pictured as a flow of phonons scattered along their individual trajectory. In rare circumstances, momentum-conserving collision events dominate, and thermal transport becomes hydrodynamic. One of these cases, dubbed the Poiseuille flow of phonons, can occur in a temperature window just below the peak temperature of thermal conductivity. We report on a study of heat flow in bulk black phosphorus between 0.1 and 80 K. We find a thermal conductivity showing a faster than cubic temperature dependence between 5 and 12 K. Consequently, the effective phonon mean free path shows a nonmonotonic temperature dependence at the onset of the ballistic regime, with a size-dependent Knudsen minimum. These are hallmarks of Poiseuille flow previously observed in a handful of solids. Comparing the phonon dispersion in black phosphorus and silicon, we show that the phase space for normal scattering events in black phosphorus is much larger. Our results imply that the most important requirement for the emergence of Poiseuille flow is the facility of momentum exchange between acoustic phonon branches. Proximity to a structural transition can be beneficial for the emergence of this behavior in clean systems, even when they do not exceed silicon in purity.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text