Research ArticleECOLOGY

Capacity to support predators scales with habitat size

See allHide authors and affiliations

Science Advances  04 Jul 2018:
Vol. 4, no. 7, eaap7523
DOI: 10.1126/sciadv.aap7523

You are currently viewing the abstract.

View Full Text

Abstract

Habitat reduction could drive biodiversity loss if the capacity of food webs to support predators is undermined by habitat-size constraints on predator body size. Assuming that (i) available space restricts predator body size, (ii) mass-specific energy needs of predators scale with their body size, and (iii) energy availability scales with prey biomass, we predicted that predator biomass per unit area would scale with habitat size (quarter-power exponent) and prey biomass (three-quarter–power exponent). We found that total predator biomass scaled with habitat size and prey resources as expected across 29 New Zealand rivers, such that a unit of habitat in a small ecosystem supported less predator biomass than an equivalent unit in a large ecosystem. The lower energetic costs of large body size likely mean that a unit of prey resource supports more biomass of large-bodied predators compared to small-bodied predators. Thus, contracting habitat size reduces the predator mass that can be supported because of constraints on predator body size, and this may be a powerful mechanism exacerbating reductions in biodiversity due to habitat loss.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text