Research ArticleNEUROSCIENCE

A BK channel–mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing

See allHide authors and affiliations

Science Advances  04 Jul 2018:
Vol. 4, no. 7, eaat1357
DOI: 10.1126/sciadv.aat1357

You are currently viewing the abstract.

View Full Text

Abstract

Action potential shape is a major determinant of synaptic transmission, and mechanisms of spike tuning are therefore of key functional significance. We demonstrate that synaptic activity itself modulates future spikes in the same neuron via a rapid feedback pathway. Using Ca2+ imaging and targeted uncaging approaches in layer 5 neocortical pyramidal neurons, we show that the single spike–evoked Ca2+ rise occurring in one proximal bouton or first node of Ranvier drives a significant sharpening of subsequent action potentials recorded at the soma. This form of intrinsic modulation, mediated by the activation of large-conductance Ca2+/voltage-dependent K+ channels (BK channels), acts to maintain high-frequency firing and limit runaway spike broadening during repetitive firing, preventing an otherwise significant escalation of synaptic transmission. Our findings identify a novel short-term presynaptic plasticity mechanism that uses the activity history of a bouton or adjacent axonal site to dynamically tune ongoing signaling properties.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text