Research ArticleChemistry

A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification

See allHide authors and affiliations

Science Advances  02 Jan 2019:
Vol. 5, no. 1, eaau0637
DOI: 10.1126/sciadv.aau0637

Abstract

Few artificial systems can be exfoliated into, and observed as, single wires with lengths of more than several micrometers, and no previous example features a copolymer structure; this is in contrast with biopolymers such as single-strand DNAs. Here, we create a set of one-dimensional coordination copolymers featuring bis(dipyrrinato)zinc complex motifs in the main chain. A series of random copolymers is synthesized from two types of bridging dipyrrin proligand and zinc acetate, with various molar ratios between the proligands. Sonication of the bulk solid copolymer in organic solvent exfoliates single strands with lengths of 1.4 to 3.0 μm. Atomic force microscopy at ambient conditions visualizes the copolymer structure as height distributions. The copolymer structure improves its photoluminescence (up to 32%) relative to that of the corresponding homopolymers (3 and 10%). Numerical simulation based on a restricted random walk model reproduces the photoluminescence intensification, suggesting at the same time the existence of fast intrawire exciton hopping.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text