Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation

See allHide authors and affiliations

Science Advances  25 Jan 2019:
Vol. 5, no. 1, eaav1851
DOI: 10.1126/sciadv.aav1851


One of the bottlenecks in realizing the potential of atom-thick graphene membrane for gas sieving is the difficulty in incorporating nanopores in an otherwise impermeable graphene lattice, with an angstrom precision at a high-enough pore density. We realize this design by developing a synergistic, partially decoupled defect nucleation and pore expansion strategy using O2 plasma and O3 treatment. A high density (ca. 2.1 × 1012 cm−2) of H2-sieving pores was achieved while limiting the percentage of CH4-permeating pores to 13 to 22 parts per million. As a result, a record-high gas mixture separation performance was achieved (H2 permeance, 1340 to 6045 gas permeation units; H2/CH4 separation factor, 15.6 to 25.1; H2/C3H8 separation factor, 38.0 to 57.8). This highly scalable pore etching strategy will accelerate the development of single-layer graphene-based energy-efficient membranes.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text