Research ArticleDEVELOPMENTAL NEUROSCIENCE

Early-life sleep disruption increases parvalbumin in primary somatosensory cortex and impairs social bonding in prairie voles

See allHide authors and affiliations

Science Advances  30 Jan 2019:
Vol. 5, no. 1, eaav5188
DOI: 10.1126/sciadv.aav5188

Abstract

Across mammals, juveniles sleep more than adults, with rapid eye movement (REM) sleep at a lifetime maximum early in life. One function of REM sleep may be to facilitate brain development of complex behaviors. Here, we applied 1 week of early-life sleep disruption (ELSD) in prairie voles (Microtus ochrogaster), a highly social rodent species that forms lifelong pair bonds. Electroencephalographic recordings from juvenile voles during ELSD revealed decreased REM sleep and reduced γ power compared to baseline. ELSD impaired pair bond formation and altered object preference in adulthood. Furthermore, ELSD increased GABAergic parvalbumin immunoreactivity in the primary somatosensory cortex in adulthood, a brain region relevant to both affected behaviors. We propose that, early in life, sleep is crucial for tuning inhibitory neural circuits and the development of species-typical affiliative social behavior.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text