Time-optimized pulsed dynamic nuclear polarization

See allHide authors and affiliations

Science Advances  18 Jan 2019:
Vol. 5, no. 1, eaav6909
DOI: 10.1126/sciadv.aav6909


Pulsed dynamic nuclear polarization (DNP) techniques can accomplish electron-nuclear polarization transfer efficiently with an enhancement factor that is independent of the Zeeman field. However, they often require large Rabi frequencies and, therefore, high-power microwave irradiation. Here, we propose a new low-power DNP sequence for static samples that is composed of a train of microwave pulses of length τp spaced with delays d. A particularly robust DNP condition using a period τm = τp + d set to ~1.25 times the Larmor period τLarmor is investigated which is a time-optimized pulsed DNP sequence (TOP-DNP). At 0.35 T, we obtained an enhancement of ~200 using TOP-DNP compared to ~172 with nuclear spin orientation via electron spin locking (NOVEL), a commonly used pulsed DNP sequence, while using only ~7% microwave power required for NOVEL. Experimental data and simulations at higher fields suggest a field-independent enhancement factor, as predicted by the effective Hamiltonian.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text