Research ArticleCONDENSED MATTER PHYSICS

Experimental observation of dual magnetic states in topological insulators

See allHide authors and affiliations

Science Advances  08 Feb 2019:
Vol. 5, no. 2, eaav2088
DOI: 10.1126/sciadv.aav2088

Abstract

The recently discovered topological phase offers new possibilities for spintronics and condensed matter. Even insulating material exhibits conductivity at the edges of certain systems, giving rise to an anomalous quantum Hall effect and other coherent spin transport phenomena, in which heat dissipation is minimized, with potential uses for next-generation energy-efficient electronics. While the metallic surface states of topological insulators (TIs) have been extensively studied, direct comparison of the surface and bulk magnetic properties of TIs has been little explored. We report unambiguous evidence for distinctly enhanced surface magnetism in a prototype magnetic TI, Cr-doped Bi2Se3. Using synchrotron-based x-ray techniques, we demonstrate a “three-step transition” model, with a temperature window of ~15 K, where the TI surface is magnetically ordered while the bulk is not. Understanding the dual magnetization process has strong implications for defining a physical model of magnetic TIs and lays the foundation for applications to information technology.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text