Research ArticleIMMUNOLOGY

Novel reprogramming of neutrophils modulates inflammation resolution during atherosclerosis

See allHide authors and affiliations

Science Advances  06 Feb 2019:
Vol. 5, no. 2, eaav2309
DOI: 10.1126/sciadv.aav2309

Abstract

Nonresolving inflammation perpetuated by innate leukocytes is involved in the pathogenesis of unstable atherosclerosis. However, the role and regulation of neutrophils related to nonresolving inflammation and atherosclerosis are poorly understood. We report herein that chronic subclinical endotoxemia, a risk factor for atherosclerosis, skewed neutrophils into a nonresolving inflammatory state with elevated levels of inflammatory mediators (Dectin-1, MMP9, and LTB4) and reduced levels of homeostatic mediators (LRRC32, TGFβ, and FPN). The polarization of neutrophils was due to ROS-mediated activation of oxCAMKII, caused by altered peroxisome homeostasis and reduced lysosome fusion. Application of 4-phenylbutyrate (4-PBA) enhanced peroxisome homeostasis of neutrophils, reduced oxCAMKII, and rebalanced the expression profiles of pro- and anti-inflammatory mediators. Adoptive transfer of neutrophils programmed by subclinical endotoxemia rendered exacerbated atherosclerosis. In contrast, transfer of ex vivo programmed neutrophils by 4-PBA reduced the pathogenesis of atherosclerosis. Our data define novel neutrophil dynamics associated with the progression and regression of atherosclerosis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text