Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano–superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)2Te3 thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.

RESULTS

Here, we combine electronic transport with a scanning superconducting quantum interference device (SQUID) of 200-nm diameter that resides on the apex of a quartz tip [SQUID-on-Tip (SOT)] (21, 22) to simultaneously probe the magnetic and electronic transitions at 4He temperatures in a 7–quintuple layer (QL)–thick Cr0.1(Bi0.5Sb0.5)1.9Te3 film grown by molecular beam epitaxy (MBE) on an SrTiO3 substrate (Fig. 1). The large dielectric constant of the substrate allows effective control of the chemical potential through back gating. The hysteretic R_{xy} transition occurs at a coercive field of $H_c = 130$ mT at 250 mK (Fig. 1A). At elevated fields, the longitudinal resistance (R_{xx}) shows a pronounced dip as a function of the back-gate voltage at $V_g \approx 6$ V.
due to an incipient QAH state (Fig. 1B). At the lowest measurement temperature (250 mK) used here, the sample we discuss does not yet show the fully developed QAH. This is similar to previous experiments on Cr-doped TI films (4–9) where quantized Hall resistance appears only at dilution refrigerator temperatures, far below the onset temperature of hysteretic magnetic behavior (4, 23). Figure 1 (E to H) shows images of the local distribution of the magnetic field \(B_z(x,y) \) in the sample at various points along the magnetization loop. We find \(B_z(x,y) \) to be highly inhomogeneous at all fields, with peak contrast at \(H_c \), where the average magnetization vanishes (Fig. 1, F and G). Submicrometer structure is evident even at fields corresponding to saturation of transport coefficients (Fig. 1, E and H), and images corresponding to opposite magnetization are highly anticorrelated on microscopic scales, including at full saturation. This suggests an inhomogeneous distribution of magnetic moments due to a random spatial distribution of the Cr dopants. Although high-resolution transmission electron microscopy measurements on our samples have yet to show any obvious evidence of Cr clustering (see fig. S1), we cannot preclude inhomogeneity at the nanoscale, akin to that found in other magnetically doped semiconductors such as Cr-doped ZnTe (24). Clear evidence of phase separation has only been seen in Cr-doped Bi\(_2\)Se\(_3\) thin-film (25) samples that do not show the QAH state, whereas large nanoscale fluctuations in the local Cr density have been observed in Te-based samples (26) because of random doping that introduces strong disorder in the material (27).

In metallic FM thin films with out-of-plane magnetization, it is well established that magnetization reversal develops via the nucleation and propagation of domain walls separating regions of opposite magnetization. Such domain wall–mediated magnetization reversal has also been imaged in FM semiconductor films (28, 29) at magnetic dopant concentrations comparable to those in our magnetic TI films. However, scanning SOT microscopy reveals a very different picture of the magnetization reversal process in magnetic TIs. Figure 2A shows a sequence of \(B_z(x,y) \) images acquired for increasing values of \(\mu_0 H \) near \(H_c \). The five images appear almost identical; however, numerical subtraction of successive image data [\(\Delta B_z(x,y) \)], see Fig. 2B] reveals the underlying dynamic process. Instead of the anticipated domain wall motion, magnetization reversal occurs through a series of random events in which isolated nanoscale islands undergo a reversal of their out-of-plane magnetic moment (see movie S1). These islands are a system of small, weakly interacting magnetic moments (potentially FM single domains) that constitutes a superparamagnet. As we discuss below, our findings establish a direct microscopic observation of superparamagnetism in magnetically doped TI films. Our observations caution against drawing conclusions about the FM state solely from macroscopic magnetization probes (SQUID magnetometry, magneto-optical Kerr effect) that show square hysteresis loops with robust zero field remanence (30).

To quantify the superparamagnetic dynamics across the Hall plateau transition, we fit each of the local features in the \(\Delta B_z(x,y) \) maps with a point-like out-of-plane magnetic moment \(m \) (fig. S2). Figure 2C summarizes ~1700 such fits, accumulated over four different ranges of magnetic field. Throughout the measured range, the spatial distribution of reversal events is random (Fig. 2D, inset, and fig. S3), suggesting weak interactions between neighboring islands and supporting the conclusion that superparamagnetism in Cr-doped BiSbTe films is characterized by aggregations of dopant atoms. The deviation of the Hall resistance from its saturation value begins around \(\mu_0 H = 0 \) and is accompanied by the reversal of nanoscale moments with average \(\langle m \rangle = 3 \times 10^7 \mu_B \) (Fig. 2, C and D). Given an average saturation magnetization of \(\sim 3 \mu_B/\text{Cr atom} \) as obtained from global magnetization measurements (fig. S4), the estimated average diameter of these flipping islands is \(d = 51 \text{ nm} \) for our 7-nm-thick film, considerably below our spatial resolution of \(\sim 300 \text{ nm} \). However, as the field is increased toward \(H_c \), a pronounced change in the

Fig. 1. Electrical transport and scanning magnetic imaging of 7-QL-thick Cr\(_{0.1}(\text{Bi}_{0.5}\text{Sb}_{0.5})_2\text{Te}_3\) sample at \(T = 250 \text{ mK} \). (A and B) Transport measurements showing magnetic field dependence of \(R_{xx} \) (red) and \(R_{xy} \) (black) at \(V_g = 6 \text{ V} \) (A) and the \(V_g \) dependence at \(1 \text{ T} \) (B). The dip in \(R_{xx} \) marked by the arrow shows the incipient QAH state. (C) Optical image of the sample and SOT showing the electrical contacts and the SOT reflection from the sample surface. (D) Electron micrograph of the SOT used for the magnetic imaging. (E to H) Scanning SOT images (5 × 5 \(\mu \text{m}^2 \)) of the out-of-plane magnetic field \(B_z(x,y) \) at ~300 nm above the sample surface at four antisymmetric locations along the magnetization loop marked in (A). Note strong anticorrelation between (E) and (H), and (F) and (G). Pixel size, 50 nm; pixel integration time, 10 ms.
moment distribution is observed with a shift to higher m values and appearance of a long tail of large moments with $m \geq 10^5 \mu_B$ (Fig. 2, C and D). The microscopic reversal moments m can be summed to obtain the net change in magnetization M over a continuous field range (Fig. 2E). Comparison with simultaneously acquired R_{xy} shows a qualitative match, implying that the behavior of the transport coefficients through the transition is mainly determined by the underlying change in magnetization. Superparamagnetic behavior and a similar relationship between measured magnetization and transport coefficients were found in a second sample as well as in an Mn-doped Bi$_2$Te$_3$ film (see movie S2 and figs. S6 to S9).

Hysteretic magnetic transitions are a signature of metastability and typically display temporal relaxation via thermal activation or quantum tunneling. We probe magnetic relaxation in real time by polarizing the system at $\mu_0 H = -1$ T and then ramping the field to a positive set point $\mu_0 H_{set}$. We then acquire repeated images of $B_z(x,y)$ while simultaneously monitoring electronic transport. No relaxation is observed on laboratory time scales for $\mu_0 H_{set} < 0$ in either magnetization or transport coefficients. Spontaneous relaxation begins to be evident at small positive fields ($\mu_0 H_{set} = 63$ mT), manifesting as magnetic reversal events $\Delta B_z(x,y)$ and a slow upward drift of R_{xy}. The frequency and number of these reversals significantly increase near the coercive field at $\mu_0 H_{set} = 126$ mT (Fig. 3, A and C).

The temporal relaxation measurements further corroborate the superparamagnetic behavior: at temperatures well below the blocking temperature, the magnetization of a superparamagnet is hysteretic, showing minimal relaxation at low fields. On approaching H_c, the magnetic anisotropy barrier U is reduced, leading to relaxation when $U = k_B T$. Because U is proportional to the volume of the superparamagnetic particles, smaller islands undergo thermal activation at a lower field. Simultaneous transport measurements (Fig. 3D) indicate that the electronic transition closely tracks the magnetic relaxation, with transport coefficient relaxation evident at $\mu_0 H_{set} = 63$ mT and pronounced at 126 mT, in accord with the total temporal change in magnetization extracted from the SOT data (Fig. 3C).

The plateau transition observed in electronic transport appears to be mainly dictated by the underlying magnetic reversal. Surprisingly, however, we find that the dynamics of the magnetic system can, in turn, be influenced by the electronic system. To explore this effect, we perform a
variable Fermi level at constant saturated magnetization. Note that at full saturation, variable V_g data retrace the same path upon repetition.

On this plot, the temporal relaxation of transport coefficients (fig. S13) is seen to track constant V_g arcs, implying that temporal magnetic relaxation is the dominant mechanism and consistent with the scanning magnetometry results (Fig. 4, C and D, gray dots along $V_g = 6$ V arc). Again, consistent with magnetometry data, V_g excursions markedly enhance the magnetization relaxation in the metastable regime (Fig. 4, C and D). The blue trace shows the evolution of the transport coefficients during six successive V_g excursions, with $ΔV_g$ increasing from ±1 to ±3 V at a constant field of 126 mT. Successive V_g sweeps do not retrace each other, consistent with an irreversible change in the net magnetization. Repeating the same experiment for larger excursion of $ΔV_g = ±30$ V, the magnetization is observed to rapidly relax, nearly reaching complete saturation (cyan in Fig. 4, C and D). As Fig. 4C makes clear, the gate-induced magnetic relaxation is strongly dependent on maximum extent of the voltage excursion, although we find it to be independent of sweep direction and rate.

Strikingly, despite the marked effect of gate voltage variations on magnetic relaxation, field sweeps at different values of V_g show only small deviations in the coercive field (Fig. 4, A and B), indicating that carrier density has little effect on the average magnetization. These seemingly contradictory observations can be qualitatively understood by invoking the strongly disordered nature of the superparamagnetic state. In our strongly disordered system, the global gap in the density of states is bridged by a proliferation of subgap states induced by the random polarization of the superparamagnetic islands, possibly leading to electron-hole puddles (27) rather than a hard gap. These localized states can, in turn, mediate local FM interactions. V_g excursions modify the magnetic anisotropy energy of individual islands through the strong dependence of density of states on position and energy, randomly changing the magnetic potential landscape without significantly changing the average properties of the magnetic disorder potential (and thus the coercive field measured at fixed V_g). However, unlike in QH systems, the magnetic disorder is not quenched: the weakly interacting superparamagnetic islands are metastable and subject to irreversible relaxation. When the applied field is oriented opposite to the net magnetization, some local configurations are separated from the ground state by a small energy barrier U. Any local perturbation, including a modulation of local density of states, can cause an irreversible flip, leading to rapid stimulated relaxation upon repeated excursions of V_g. Our statistical analysis of temporal relaxation (fig. S15) shows that gate voltage does modulate the average size of the flipping moments for the same applied magnetic field. This again suggests that carriers mediate magnetic interactions.

DISCUSSION

In conclusion, we have imaged the magnetic structure of Cr-doped thin films of (Bi,Sb)$_2$Te$_3$ and found it to be strongly disordered. The magnetic reversal transition and its temporal relaxation are mediated by isolated nanoscale island reversals rather than domain wall motion, pointing to a superparamagnetic state composed of nearly noninteracting magnetic domains. Quantitative analysis shows that the observed dynamics account for most of the total magnetic moment, excluding the possibility of an underlying uniform FM state. Unexpectedly, gate voltage modulation strongly enhances the magnetic sequence of magnetic imaging scans at 126 mT interspersing consecutive scans with small excursions of the back-gate voltage $ΔV_g$ (Fig. 3B).

All imaging scans are taken at a gate voltage of 6 V. Between scans, the gate is ramped at 500 mV/s to a voltage 6 V $+ΔV_g$ and back to 6 V, with a wait time of a few seconds at the extremal value. Remarkably, even small $ΔV_g$ $~1$ V excursions significantly enhance the relaxation of the superparamagnetic islands, as evident from the statistics of the observed moment reversals (Fig. 3C). This enhancement, in turn, is evident in the transport coefficients, as shown in Fig. 3D.

A full comparison of the effects of applied magnetic field, gate voltage, and time on transport coefficients is presented in Fig. 4C, which shows a unified parametric plot of the transport coefficient vector (R_{xx}, R_{xy}). On this plot, the large magnetic hysteresis evident in Fig. 4 (A and B) is absent, demonstrating that the relation between R_{xx} and R_{xy} (at a given V_g) is a universal function determined by the magnetization. Within a single constant-V_g arc-shaped plot, zero net magnetization corresponds to the maximum of the arc at $R_{xy} = 0$, whereas the varying Hall angle along the arc reflects the varying sample magnetization. Variable V_g traces over $ΔV_g = ±30$ V at $μ_0H = ±1$ T, marked in black, show contours of variable Fermi level at constant saturated magnetization. Notably, the temporal relaxation of transport coefficients (fig. S13) is seen to track constant V_g arcs, implying that temporal magnetic relaxation is the dominant mechanism and consistent with the scanning magnetometry results (Fig. 4, C and D, gray dots along $V_g = 6$ V arc). Again, consistent with magnetometry data, V_g excursions markedly enhance the magnetization relaxation in the metastable regime (Fig. 4, C and D). The blue trace shows the evolution of the transport coefficients during six successive V_g excursions, with $ΔV_g$ increasing from ±1 to ±3 V at a constant field of 126 mT. Successive V_g sweeps do not retrace each other, consistent with an irreversible change in the net magnetization. Repeating the same experiment for larger excursion of $ΔV_g = ±30$ V, the magnetization is observed to rapidly relax, nearly reaching complete saturation (cyan in Fig. 4, C and D). As Fig. 4C makes clear, the gate-induced magnetic relaxation is strongly dependent on maximum extent of the voltage excursion, although we find it to be independent of sweep direction and rate.

Strikingly, despite the marked effect of gate voltage variations on magnetic relaxation, field sweeps at different values of V_g show only small deviations in the coercive field (Fig. 4, A and B), indicating that carrier density has little effect on the average magnetization. These seemingly contradictory observations can be qualitatively understood by invoking the strongly disordered nature of the superparamagnetic state. In our strongly disordered system, the global gap in the density of states is bridged by a proliferation of subgap states induced by the random polarization of the superparamagnetic islands, possibly leading to electron-hole puddles (27) rather than a hard gap. These localized states can, in turn, mediate local FM interactions. V_g excursions modify the magnetic anisotropy energy of individual islands through the strong dependence of density of states on position and energy, randomly changing the magnetic potential landscape without significantly changing the average properties of the magnetic disorder potential (and thus the coercive field measured at fixed V_g). However, unlike in QH systems, the magnetic disorder is not quenched: the weakly interacting superparamagnetic islands are metastable and subject to irreversible relaxation. When the applied field is oriented opposite to the net magnetization, some local configurations are separated from the ground state by a small energy barrier U. Any local perturbation, including a modulation of local density of states, can cause an irreversible flip, leading to rapid stimulated relaxation upon repeated excursions of V_g. Our statistical analysis of temporal relaxation (fig. S15) shows that gate voltage does modulate the average size of the flipping moments for the same applied magnetic field. This again suggests that carriers mediate magnetic interactions.

Fig. 3. Temporal and back gate–induced relaxation of the superparamagnetic state. (A) Differential image $ΔB_0(xy)$ obtained by subtraction of two consecutive images acquired at constant $μ_0H_{set} = 126$ mT and $V_g = 6$ V after a field ramp from $−1$ T. Image acquisition time is 200 s with 50-s wait time between images. (B) Same as (A) with gate excursion progressively increasing from $ΔV_g = 0.1$ to 1.1 V in-between consecutive images. (C) Histogram of the temporal relaxation process showing the moment reversals m attained from four consecutive $ΔB_0(xy)$ images at $μ_0H_{set} = 63$ mT (dark blue) and at $μ_0H_{set} = 126$ mT (light blue), and of V_g-induced relaxation at $μ_0H_{set} = 126$ mT acquired after the temporal relaxation of 20 min (green). (D) R_{xy} as a function of field (black) and during relaxation at a fixed field taken simultaneously with the magnetic imaging. Temporal relaxation over 20 min is more pronounced at 126 mT (light blue) than at 63 mT (dark blue). V_g excursions (green) induce large relaxation at 126 mT. Inset: Full R_{xy} hysteresis loop showing the region of interest.

relaxation, suggesting that the charge carriers are involved in the mediation of magnetic interactions. Our results suggest that the quantum phase transition between QAH states can be strongly affected by the nature of the underlying magnetic transition, leading to deviations from the expected universal scaling of the plateau transition as indicated by recent transport studies (31). In particular, the magnetic disorder potential lowers the local QAH gap, lowering energy barriers for hopping conductivity across the sample bulk. Moreover, the large distribution in the flipping energy barrier U guarantees that, for zero magnetic field and finite temperature, some magnetic reversals will occur because of thermal fluctuations, further decreasing the average bulk gap. Although topological states are robust to disorder in the low temperature limit, as the temperature increases toward the blocking temperature T_B of the superparamagnetic islands, the enhanced dissipation due to thermally excited magnetization reversals is bound to destroy the protected state. Thus, nanoscale superparamagnetism may be one of the sources responsible for the fragility of the QAH state at elevated temperatures.

MATERIALS AND METHODS

Samples were grown by MBE on commercial SrTiO$_3$ substrates with dimensions of $5 \times 5 \times 0.5$ mm3. Substrates were typically annealed in oxygen at 925°C for 2.5 hours and were screened using atomic force microscopy (AFM) to make sure that the surface was atomically ordered with a root mean square roughness of less than 0.3 nm (fig. S16). Substrates were indium-mounted for growth in the MBE chamber and outgassed at a substrate temperature of 550°C for about 1 hour to remove any residual contamination before growth. The TI films were grown using elemental materials of at least 5N purity evaporated from Knudsen-type thermal cells at a growth rate of about 0.4 QL per minute at a temperature of 250°C, as measured by a pyrometer. The Cr, Bi, and Sb compositions were estimated from secondary ion mass spectrometry (SIMS) measurements on a similarly grown sample. The SIMS atomic percentages were calibrated using another sample of known composition that was measured at the same time.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/1/10/e1500740/DC1

MATERIALS AND METHODS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/1/10/e1500740/DC1

Sample characterization

Fig. S1. STEM imaging and EDS elemental mapping of a Cr-doped (Bi,Sb)$_2$Te$_3$ film on SrTiO$_3$.

Fig. S2. Fitting procedure of magnetic moments.

Fig. S3. Spatial distribution of the magnetization reversal process in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ film at T = 250 mK.

Fig. S4. SQUID magnetometry measurements of a ~40-QL-thick film.

Fig. S5. Movie snapshot of magnetization reversal process in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ film at T = 250 mK.

Fig. S6. Movie snapshot of magnetization reversal process in 10-QL Cr-doped (Bi,Sb)$_2$Te$_3$ film at T = 250 mK.

Fig. S7. Magnetization reversal dynamics and transport coefficients in 10-QL-thick Cr-doped (Bi,Sb)$_2$Te$_3$ sample at T = 250 mK.

Fig. S8. Scaling of the cumulative magnetization change and the transverse resistance in 10-QL Cr-doped (Bi,Sb)$_2$Te$_3$ sample.

Fig. S9. Transport and scanning magnetic imaging of 70-nm-thick Mn-doped BiTe sample at T = 250 mK.

Fig. S10. Schematics of transport measurements.

Fig. S11. Temperature dependence of the transport coefficients in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ film.

Fig. S12. Gate voltage dependence of R_{xx} in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ sample.

Fig. S13. Temperature relaxation of transport coefficients near the coercive field in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ sample.

Fig. S14. Transport coefficients in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ sample with continuous gate excursions.

Fig. S15. Statistical analysis of temporal moment relaxation for different V_g values in 7-QL Cr$_{0.1}$(Bi$_{0.5}$Sb$_{0.5}$)$_{1.9}$Te$_3$ film at T = 250 mK.

AFM of Cr-doped samples

Fig. S16. AFM topography images of the two studied Cr-doped (Bi,Sb)$_2$Te$_3$ samples.
REFERENCES AND NOTES

Acknowledgments: We thank E. Berg for illuminating discussions. Funding: This work was supported by the Minerva Foundation with funding from the German Federal Ministry of Education and Research and by the Israel Science Foundation (grant no. 132/14), N.S., A.R., and A.K. acknowledge support from DARPA (Defense Advanced Research Projects Agency) Meso (Mesodynamic Architectures) (grant no. N66001-11-1-4110), ONR (Office of Naval Research) (grant no. N00014-12-1-0117), and ARO MURI (Army Research Office Multidisciplinary University Research Initiative) (grant no. W911NF-12-1-0461), as well as use of the NSF National Nanofabrication Users Network Facilit at the Pennsylvania State University. A.F.Y. acknowledges the support of Goldschleger Center for Nanophysics. Author contributions: E.O.L., A.F.Y., and J.C. performed the magnetic imaging and transport measurements. A.R., A.K., and N.S. fabricated and characterized the samples. H.R.N. fabricated the SOTs. Y.A. and A.Y.M. developed the numerical data analysis. S.K. performed global magnetization studies. M.E.H. developed the SOT readout system. Y.M. prepared the samples. E.O.L., A.F.Y., E.Z., and N.S. wrote the paper with contributions from other authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 8 June 2015
Accepted 26 August 2015
Published 6 November 2015
10.1126/sciadv.1500740

Visualization of superparamagnetic dynamics in magnetic topological insulators
Ella O. Lachman, Andrea F. Young, Anthony Richardella, Jo Cuppens, H. R. Naren, Yonathan Anahory, Alexander Y. Meltzer, Abhinav Kandala, Susan Kempinger, Yuri Myasoedov, Martin E. Huber, Nitin Samarth and Eli Zeldov

Sci Adv 1 (10), e1500740.
DOI: 10.1126/sciadv.1500740