
R E S EARCH ART I C L E
QUANTUM MECHAN ICS
1Institute for Quantum Optics and Quantum Information, Austrian Academy of
Sciences, 6020 Innsbruck, Austria. 2Institute for Theoretical Physics, University of
Innsbruck, 6020 Innsbruck, Austria.
*Corresponding author. E-mail: w.lechner@uibk.ac.at

Lechner, Hauke, Zoller Sci. Adv. 2015;1:e1500838 23 October 2015
2015 © The Authors, some rights reserved;

exclusive licensee American Association for

the Advancement of Science. Distributed

under a Creative Commons Attribution

License 4.0 (CC BY). 10.1126/sciadv.1500838
A quantum annealing architecture with all-to-all
connectivity from local interactions

Wolfgang Lechner,1,2* Philipp Hauke,1,2 Peter Zoller1,2
D
ow

nlo
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting
quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising
interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum
annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the
interactions between physical qubits. We present a scalable architecture with full connectivity, which can be im-
plemented with local interactions only. The input of the optimization problem is encoded in local fields acting on
an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly
encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice
gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized
on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and
atomic systems.
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The step from mechanical calculators that perform hardwired
operations to fully programmable computers initiated the information
age several decades ago. With the remarkable progress in preparation
and control of quantum bits (qubits), we are now approaching the age
of quantum information. The step to a programmable, scalable, and
universal quantum device is the current challenge across platforms and
disciplines. A promising route of using quantum computing technolo-
gies in practical applications is quantum annealing (1–3). Quantum an-
nealing is a finite-temperature protocol based on adiabatic quantum
optimization (1) with the aim to efficiently solve optimization problems.
The existence of a quantum speedup in an actual device with finite qubit
lifetimes, temperature, and other sources of errors compared to classical
algorithms is currently the subject of lively debate (4–8). With the pros-
pect of overcoming these technical challenges in next-generation devices,
quantumannealing is currently gaining attention in academia and indus-
try (2, 3, 9–11).

The paradigm of quantum annealing is to encode an optimiza-
tion problem in the interactions between classical variables that can
take the values ±1. Thus, the problem is cast into the form (depicted
in Fig. 1A) of an all-to-all Ising spin glass model (12)

Hf ¼ ∑
N

i¼1
∑
j<i

Jijs
ðiÞ
z sðjÞz þ ∑

N

i¼1
bis

ðiÞ
z ð1Þ

where sz
(i) is the z-Pauli matrix associated with the ith spin. The in-

teraction matrix Jij and the additional local magnetic fields bi fully
parameterize the optimization problem. The task of finding the op-
timal solution amounts to finding the ground state of Hf. Adiabatic
quantum annealing aims at achieving this by turning the classical spin
variables into qubits and adiabatically transferring the system from a
trivial initial state, for example, the ground state of H0 = ∑i hisx

(i), to
the ground state of Hf. The protocol is executed by the time-
dependent Hamiltonian

HðtÞ ¼ AðtÞH0 þ BðtÞHf ð2Þ

with A = 1 and B = 0 initially and A = 0 and B = 1 at the end of the
sweep. If the sweep is sufficiently slow, the quantum annealer reaches
the ground state of Hf with the aid of quantum tunneling, and one has
thus found the desired result of the optimization.

To achieve a universal quantum annealer in the spin glass pic-
ture, each element of Jij has to be controllable. However, the inter-
actions of physical qubits are fundamentally quasi-local by nature,
which severely restricts the control over the elements in the inter-
action matrix Jij. For example, in quantum annealers such as the D-
Wave machine (2, 3), particular pair interactions are hardwired,
whereas in other potential realizations, such as ultracold gases in
optical lattices, interactions would be determined by the geometry
(13, 14).

Here, we present an approach that overcomes this challenge by
detaching from the spin glass paradigm. Our architecture relies on
a conceptual division between the logical qubits s, defining the prob-
lem given in Eq. 1, and the physical qubits s̃ available in the labora-
tory. To differentiate the notation, we call the eigenstates of s̃z for the
physical qubits 1〉, 0〉 with eigenvalues +1, −1. The physical qubits repre-
sent the relative configuration of two logical qubits along a given bond
Jij, with a parallel (antiparallel) alignment being mapped to 1 (0) (see
Fig. 1B). The optimization parameters Jij then become, in the lab-
oratory, local magnetic fields, allowing the user to fully program
the device with local control. As discussed in detail below, the log-
ical qubits are redundantly encoded in the topology of the new
architecture, enabling an intrinsic fault tolerance of the device.
Moreover, the architecture can be generalized to encoding single-
particle and general n-body interaction terms. To accommodate all
interaction matrix elements, the system size in our architecture is
enlarged from N logical qubits to K = N(N − 1)∕2 physical qubits.
This increased number of degrees of freedom is compensated by K −
N + 1 constraintsCl, which one can realize with local interactions in a
simple square-lattice geometry.
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The optimization problem is encoded in the Hamiltonian

Hp ¼ ∑
K

k¼1
Jk s̃z

ðkÞ þ∑
K−Nþ1

l¼1
Cl ð3Þ

The vector Jk runs over all K = N(N − 1) ∕2 elements of the interaction
matrix Jij from Eq. 1, thus translating the optimization parameters into
easily controllable local fields that act on physical qubits. Below, we
show that with the adequate choice of the constraints and their ge-
ometrical arrangement, all n-body interactions (local magnetic
field, pair interactions, three-body interactions, etc.) can be en-
coded in Eq. 3.

The constraints Cl are constructed from conditions on closed loops
of logical qubits with the necessary requirements (i) that the con-
straints cover all physical qubits and (ii) that the number of constraints
is at least K − N. As an illustrative example for two-body terms, con-
sider the closed loop of four bonds sz

(1)sz
(3)→sz

(2)sz
(3)→sz

(2)sz
(4)→

sz
(1)sz

(4) (red lines in Fig. 1A). Consistency of the relative alignment of
sz

1,2,3,4 demands either none, two, or all four of the pairs of logical
spins to be antiparallel. That is, the number of 1’s in the four physical
qubits s̃13z ; s̃23z ; s̃24z ; s̃14z has to be even (red cross in Fig. 1D). The
same considerations apply for any closed loop in the logical qubits.
For example, along a closed triangle, the number of physical qubits
Lechner, Hauke, Zoller Sci. Adv. 2015;1:e1500838 23 October 2015
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equal to 0 can be 0 or 2. Similar constraints are also relevant in the con-
text of lattice gauge theories (15). From all the possible closed loops, we
select those that (iii) can be implemented in real space on a simple geo-
metry with local interactions only.

The solution that satisfies all the above conditions (i) to (iii) is
illustrated in Fig. 1D. For this, the constraints are constructed as
follows: Consider the index distance between logical qubits s = |i − j|.
The chosen loops consist of four connections: one of index distance s,
two connections with distance s + 1, and one with distance s + 2. As an
illustration, a building block loop with s = 1 is shown in Fig. 1 (A and
D) marked in red. The total of all s = 1 loops gives N − 3 constraints.
The next building block is a loop with s = 2, which can be geometrically
added as an additional row in a triangle, as shown in Fig. 1D.
Continuing this procedure up to s = N − 2 results in a construction
that satisfies all conditions (i) to (iii).

In a physical device, the local constraints can be enforced in var-
ious possible ways. Two typical forms to write such constraints are

Cl ¼ þCð ∑
m¼n;e;s;w

s̃ ðl;mÞ
z þ SlzÞ2

or

Cl ¼ −Cs̃ðl;nÞz s̃ðl;eÞz s̃ðl;sÞz s̃ðl;wÞz ð4Þ

Here, the first sum represents an “ancilla-based” implementation.
The sum runs over the four members of each plaquette (north, east,
south, and west) and Sz is an ancilla qutrit with three possible
values: −4, 0, or 4. Implementations with ancilla qubits can also
be implemented with qubits only. The second form is an imple-
mentation that requires a four-body interaction on the plaquettes.
The preferable implementation of the constraints depends on the
details of the physical qubits (for example, superconducting qubits,
cold atoms, molecules or ions, and cavities).

As a final step, the boundaries of the lattice of physical qubits have
to be taken care of. In Fig. 1D, the bottom row (labeled with
“Readout”) consists of triangles instead of squares. These can be treated
in two ways: (i) introduce a separate constraint enforcing the condi-
tion that the number of 0’s in each of these triangles is odd and (ii)
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Fig. 1. Illustration of the fully connected architecture. (A) The aim is to
encode a system of N logical spins with programmable infinite-range inter-

actions (solid lines). (B) New physical qubit variables are introduced for each
of theN(N− 1)/2 interactions, which take the value 1 if two connected logical
spins point in the same direction and 0 otherwise. (C) The new physical qu-
bits are noninteracting except for local constraints on plaquettes of four
spins. (D) The constraints correspond to closed paths connecting logical
spins [for example, the red cross in (D) corresponds to the red lines in (A)].
The number of 0’s in a plaquette can be either 0, 2, or 4. The particular ar-
rangement of new spins shown in (D) allows for a two-dimensional repre-
sentation of the infinite-range model with local constraints only. An
additional row of physical qubits fixed to 1 (yellow) completes the imple-
mentation. The solution of the optimization problem can be read out in spe-
cific combinations of the physical qubits, for example, as marked in (D).
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Fig. 2. Time-dependent spectrum. (A and B) Energy spectrum of a typ-
ical adiabatic sweep with N = 4 logical qubits and an additional random

field in the programmable implementation (A) and in a fictitious imple-
mentation of the logical qubits (B). Here, t is the time and T is the total
time of the sweep. Instantaneous eigenenergies Ei are measured with re-
spect to the ground state, DE = Ei − E0. The constraint strength is C/J = 2,
and the elements of the Jij matrix are random numbers uniformly taken
from the interval [−J,J]. Although the adiabatic transformation follows dif-
ferent quantum paths, at the end of the sweep an exact correspondence
between the lowest levels of the programmable architecture and the
original model of classical spins is achieved (dashed lines).
2 of 5

http://advances.sciencemag.org/


R E S EARCH ART I C L E

 on F
ebruary 15, 2019

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

introduce N − 2 additional physical qubits that are fixed to 1 as shown
in Fig. 1D. The latter realization has the advantage that all constraints
in the resulting square lattice are treated on the same footing. The
entire scheme is scalable in a natural way: adding one logical qubit is
equivalent to adding a “line” of N physical qubits to the new system.

The protocol to find the ground state of the new Hamiltonian is
the same as in the original Ising spin glass quantum annealing described
in Eq. 2. As an initial state for the optimization protocol, we choose
the ground state of a simple Hamiltonian that can be adiabatically
transformed into Eq. 3. Note that other choices of initial states may
improve the protocol. The simplest form for illustration could be

Hp0 ¼ ∑
K

k¼1
hk s̃

ðkÞ
x ð5Þ

where the sum runs over all K new degrees of freedom. In the realiza-
tion of Cl based on ancillas, these have to be also included in Hp0. The
adiabatic sweep is described by the time-dependent Hamiltonian

HprogðtÞ ¼ AðtÞHp0 þ BðtÞHp ð6Þ
Note that in this architecture, the local field term and constraint term
in Hp can be independently switched. A particularly useful implemen-
tation could be to leave the interactions constant during the sweep.
This concludes the architecture of a fully connected spin model that
is programmable with local fields.

The new time-dependent Hamiltonian is embedded in a larger Hil-
bert space and has a different spectrum, and the sweep is associated
with a different phase transition compared to the adiabatic optimiza-
tion in Eq. 2. The difference between the two sweeps is illustrated in
Fig. 2. This difference in the quantum path during the sweep may also
offer interesting new opportunities to approach challenges in quantum
annealing, including the question of the scaling of the minimal gap or
the role of temperature and errors from qubit imperfections.

The lowest states in the final Hamiltonian are identical in both rep-
resentations of the optimization problem. During the sweep, the
minimal gap in the programmable model is smaller than that in the fic-
titious direct implementation of the logical model. However, it may
scale similar to or better than a realistic implementation of such a fully
Lechner, Hauke, Zoller Sci. Adv. 2015;1:e1500838 23 October 2015
connected graph, which is realized by embedding (16, 17) in a large
number of highly connected subgraphs. Note that the constraints are
fundamentally different from the ferromagnetic chains in embedding
strategies (16, 17). The role of the two-dimensional nature of the pla-
quette constraints during the sweep is an open question.

For details on the static errors from finite C, see fig. S1. A compar-
ison of the success probability for a small system between fictitious all-
to-all spin glass and programmable architecture is depicted in fig. S2.
Some special cases with a straightforward geometrical interpretation in
the programmable architecture are depicted in fig. S3.
MATERIALS AND METHODS

The parity-based architecture includes an intrinsic fault tolerance,
with some similarities to the error robustness of topological quan-
tum memories (18). As a result, the error due to spin flips scales
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Fig. 3. Error tolerance. The probability for a spin flip due to decoher-
ence increases with the number of physical qubits (quadratically with N)

(red). The information loss per physical qubit decreases with N (blue)
and compensates the increased spin flips such that the total error scales
linearly (dashed). The number of possible readout sequences (inset) ex-
ponentially increases with N.
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Fig. 4. Higher-order interactions. (A) Generalization to three-body in-
teraction terms. (B and C) The translation table (B) from three-body con-

figurations to two-level systems, together with constraints (C), allows for a
mapping to a three-dimensional cubic lattice. (D) The physical qubits are
aligned in a pyramid-slice configuration. Each side of each cube consists
of triples, where one index is identical for all four corners. The constraints,
identical to that of the pair interaction case, act on the four spins of each
side in a face-centered cubic geometry.
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linearly with the number of logical qubits and not with its square.
The reason is a redundant encoding of the information about the
logical qubits in the physical qubits. The solution of the optimization
is fully determined by reading out an adequate choice of N − 1 among
the N(N − 1)∕2 physical qubits. An example is marked in Fig. 1D: the
relative configurations of the pairs 12, 23, 34, 45, and 56 fully deter-
mine the logical spins up to a global inversion. Other combinations of
pairs hold the same information. As shown in the inset of Fig. 3, the
total number of possible readouts (the “determining combinations”)
exponentially increases with N.

To quantify the fault tolerance, the question we want to address is:
what is the probability of retrieving the correct result from reading out
all possible determining combinations even if a spin flipped as a result
of decoherence? More formally, this is the probability Pd that an
independent spin flip occurs during the adiabatic passage multiplied
by the probability Pm that a measurement indicates an erroneous so-
lution due to this error. The latter is related to the information loss
from a single spin flip.

In a fictitious implementation of the fully connected spin glass
model, the probability that a spin flips because of decoherence is esti-
mated as Pd = NGT, where N is the number of spins, G is the decoher-
ence rate, and T is the total time of the adiabatic passage. The probability
of measuring the wrong result if a spin has flipped is Pm = 1. Therefore,
decoherence linearly suppresses the success probability with N.

In our architecture, the number of physical qubits is N(N − 1)∕2.
Assuming the same qubit quality, the probability Pd = N(N −
1)∕2GT now scales with N2 (see Fig. 3, red). However, the infor-
mation content of a single physical spin is given by the ratio of
determining readouts that contain the given spin, Nf, to the total
number of possible determining readouts Nmeas, Pm = Nf ∕Nmeas

(see Fig. 3, blue). Remarkably, the product

PdPm ¼ NðN − 1Þ
2

GTPm ¼ N − 1ð ÞGT ð7Þ

is identical to the error scaling in the original spin model. The
redundancy in the measurement exactly compensates the increased
error rate from single spin flips. That is, because Pm = 2∕N, a majority-
vote readout will give the correct answer as long as less than N∕4
physical qubits are compromised.

The proposed scheme can be generalized from two-body interac-
tions (Eq. 1) to the inclusion of single-qubit and higher-order interac-
tion terms. Single-qubit terms, equivalent to an additional magnetic
field acting on the logical qubits, can be simply realized by adding
an auxiliary logical spin, say i = 1, that is fixed to sz

(1) = +1. Its inter-
action with the remaining particles realizes the desired field terms,
∑ibisz

(i) = ∑iJi,1sz
(i)sz

(1), with Ji,1 = bi (red qubits in Fig. 1D). In the
programmable system, this additional spin can be included by the ad-
dition of another row of physical qubits.

Higher-order interactions can be implemented with the same local
constraints in higher dimensions. Consider a three-body Hamiltonian

Hp ¼ ∑
i
∑
i<j

∑
i<j<k

Jijks
ðiÞ
z sðjÞz sðkÞz ð8Þ

The construction of the programmable model for these interactions is
depicted in Fig. 4. In analogy to Fig. 1, physical qubits represent the
results of the K3 = N(N − 1)(N − 2)∕6 three-body interactions and are
mapped back to the logical degrees of freedom by constraints. The
translation table is given in Fig. 4B. The physical qubits can be ar-
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ranged in a three-dimensional cubic lattice, depicted in Fig. 4D, with
the same constraints as given in Eq. 4 but acting now on the four spins
of each face of each cube of the lattice. Note that the spins in the tri-
angles have to be taken care of separately because all constraints
should contain an even number of spins. Also, note that the translation
table in Fig. 4B is a mapping of three bits to a single bit and, here, the
number of constraints is at least K3 − N. In principle, the scheme can be
extended to four-body and higher-interaction k-body terms. The
overhead grows then with Nk, but the geometrical arrangement of
the constraints becomes less practical.
CONCLUSIONS

In summary, we have presented a fully connected and fully program-
mable, scalable quantum annealing architecture. The interactions of
the logical qubits are mediated by gauge field constraints that can
be realized with local interactions between physical qubits. The opti-
mization problem is encoded in local fields acting on the qubits. This
allows one to implement an adiabatic sweep where only local fields
need to be tuned. The solution of the problem is encoded in the
topology of the physical qubits. The resulting adiabatic sweep is fun-
damentally different from the sweep based on a spin glass (Eq. 1) and
allows the introduction of various additional experimental knobs. The dy-
namics of the encoded logical qubits during the sweep compared to a
fictitious all-to-all connected spin glass is an important open question.
The architecture may also open opportunities to gain new insights
into open challenges in quantum annealing such as the scaling of
the minimal gap, an intrinsic error correction, the scaling of quantum
fluctuations during the sweep, the role of finite temperatures, and er-
rors from imperfections in the device. The presented architecture, with
qubits on a square-lattice geometry in combination with nearest-
neighbor interactions, may serve as a blueprint for quantum annealers
in various frameworks ranging from superconducting qubits to ultra-
cold gases in optical lattices.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/9/e1500838/DC1
Static error from finite constraint strength
Fig. S1. Static error.
Energy spectrum during the adiabatic optimization
Fig. S2. Success probability.
Dynamics
Special cases
Fig. S3. Special cases.
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