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Three-dimensional Majorana fermions in
chiral superconductors
Vladyslav Kozii, Jörn W. F. Venderbos,* Liang Fu*

Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors
with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are
spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper
pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain
a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and
location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-
selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors.
We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin
relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of
the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial
topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space.
We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candi-
dates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
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INTRODUCTION
Chiral superconductors exhibit Cooper pairing with finite angular
momentum, thus spontaneously breaking time-reversal symmetry (1).
Two-dimensional (2D) chiral superconductors have been extensively
studied in the context of Sr2RuO4 (2). They are generally expected
to have a full superconducting gap and support topologically protected
quasiparticles at the edge and in the vortex core. In contrast, 3D chiral
superconductors generally have nodes. A well-known example is super-
fluid 3He in the px + ipy paired A phase, which has two point nodes
on the Fermi surface along the pz axis (3). Quasiparticles near these
nodes are spin-degenerate and correspond to Weyl fermions (4, 5).
When spin-orbit coupling is present, chiral superconductors with
odd-parity (for example, p-wave) pairing may have nonunitary gap
structures and spin-selective point nodes (6). In this case, despite
the fact that the Fermi surface is spin-degenerate, only states of one
spin polarization at the nodal points are gapless in the superconduct-
ing state, whereas states of the opposite spin polarization are gapped.
Consequently, low-energy nodal quasiparticles arise from pairing
within states of the same spin. These quasiparticles are identical
to their antiparticles and thus are the solid-state realization of 3D
Majorana fermions.

Majorana fermions in condensed matter have recently attracted
much attention (7, 8). So far, most of the studies have focused on
localized Majorana fermion zero modes in quantum devices. In
contrast, 3D Majorana fermions that are naturally occurring as
itinerant quasiparticles in bulk chiral superconductors are not well
studied. In particular, it has been unclear what distinctive properties
these Majorana quasiparticles have and in what materials they are
likely to be found.

Here, we develop a systematic approach to classifying different
types of Majorana quasiparticles around spin-selective point nodes
in chiral superconductors. We present the criterion for these Majorana
nodes on a high-symmetry axis based on the symmetry of the supercon-
ducting order parameter and the band symmetry in the normal state.
We further infer the presence of Majorana nodes away from the high-
symmetry axis from the topology of gap structures in the momentum
space. We show that the Majorana nature of nodal quasiparticles gives
rise to a strongly anisotropic spin relaxation rate depending on the spin
direction, which can be directly measured in the nuclear magnetic
resonance (NMR) experiment. Similar to Weyl fermions in topological
semimetals, the presence of Majorana quasiparticles in chiral supercon-
ductors leads to a nodal topological superconductor phase, which
exhibits Majorana fermion surface states. As we demonstrate explicitly,
zero-energy Majorana surface states form arcs in the surface Brillouin
zone, which end at the bulk Majorana nodes. Finally, we propose
the heavy fermion superconductor PrOs4Sb12 as a promising can-
didate for chiral superconductor hosting Majorana quasiparticles.
RESULTS
Symmetry analysis of quasiparticle gap structures
We start with a general symmetry-based analysis of superconduct-
ing gap nodes in chiral superconductors with strong spin-orbit
coupling and inversion symmetry. We assume that time-reversal
symmetry is present in the normal state and is spontaneously
broken in the superconducting state due to chiral pairing. We assume
that chiral Cooper pairs carry a nonzero total angular momentum (in-
cluding both orbital and spin) J along a crystal axis of n-fold rotation
Cn, which acts jointly on the electron’s coordinate and spin. Here, n
can only be 2, 3, 4, or 6 for discrete rotation symmetry of crystals, and
J is only defined mod n. Moreover, because ±J corresponds to time-
reversed chiral states, it suffices to consider positive integers J = 1,..., n/2
for n = 2,4,6 and J = 1 for n = 3.

Here, we address the gap structure associated with the points on
the Fermi surface along the n-fold axis (hereafter denoted as z), whose
momenta are given by ±K = ±kF̂z, where kF is the Fermi momentum.
Our approach to deriving the gap structures relies on both symmetry
and topological arguments. On the basis of a systematic symmetry
analysis, we show that the form of the gap structure at ±K (that is,
the Cn-invariant Fermi surface momenta) is entirely determined by
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the total angular momentum J of the Cooper pair and the angular
momentum of energy bands at ±K in the normal state. Following
the symmetry analysis, we invoke a topological constraint on the nod-
al structure of the quasiparticle spectrum to deduce the full low-energy
gap structure, both at and away from ±K. Using these two
complementary methods, we will demonstrate the existence of two
types of point nodes, located on and off the Cn axis, respectively.

In the presence of both time-reversal (Q) and inversion (P)
symmetries, spin-orbit–coupled energy bands remain twofold-
degenerate at each momentum, and we label the degenerate bands
by a pseudospin index, a = ↑, ↓. For simplicity, we will refer to a as
spin. The presence of Cn, Q, and P symmetries guarantees that one
can choose a basis for Bloch states at ±K such that (i) the state with
a = ↑ (↓) has an angular momentum j (−j), that is

Cnc↑ð↓ÞC�1
n ¼ e±i2pj=nc↑ð↓Þ ð1Þ

where j is a positive half-integer; (ii) PcKaP
−1 = c−Ka; and (iii)

QcKaQ
−1 = eabc−Kb, where eab is the Levi-Civita symbol.

Having specified the angular momentum J of the chiral Cooper
pair and the angular momentum ±j of Bloch electrons, we are ready
to deduce the gap structure near ±K by symmetry analysis. Only
pseudospin-triplet pairings, which have odd-parity symmetry,
may generate spin-dependent superconducting gaps necessary for
3D Majorana fermions. There are three triplet pairing operators
between states near ±K, denoted by

G1
q ¼ c†Kþq↑c

†
�K�q↑

G2
q ¼ c†Kþq↓c

†
�K�q↓

G3
q ¼

�
c†Kþq↑c

†
�K�q↓ þ c†Kþq↓c

†
�K�q↑

� ð2Þ

where G1,2,3 at q = 0 carry angular momenta 2j, −2j, and 0, respec-
tively. In general, the pairing potential near ±K is a mixture of these
three pairing operators, with corresponding form factors

Hp ¼ ∑
q
∑
i
DiðqÞGi

q þH:c: ð3Þ

Because we are interested in the gap structure near q = 0, it suf-
fices to expand Di(q) to the leading order in q

DiðqÞ ¼ Cþ
i q

aiþ þ C�
i q

bi� ð4Þ

where we defined q± = qx ± iqy, and (qx, qy) is the momentum
tangential to the Fermi surface at ±K. The exponents ai, bi are
integers greater than or equal to zero. When ai ≠ bi, the smaller
of the two determines the leading-order behavior of the gap
function, whereas the other can be neglected. When ai = bi, both
terms are equally important and should be kept together.

The form of Di(q) is constrained by the requirement that the
pairing term Hp carries the angular momentum J. This completely
determines the exponents ai, bi [that is, the analytic form of Di(q) at
small q], allowing us to deduce the gap structures in the vicinity of ±K.
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
First, consider the case J = 0 mod n, that is, when the supercon-
ducting order parameter has effectively zero angular momentum with
respect to the Cn rotation axis. In this case, the triplet pairing
component with zero angular momentum G3 is allowed at ±K, that
is, D3(q) is finite at q = 0, creating a full pairing gap without any
low-energy quasiparticles.

Second, consider nonzero (mod n) J. If J ≠ 2jmod n, none of the
three triplet pairing terms can be finite at ±K, that is, Di,q → 0 as q→
0 for all i = 1,2,3. This implies that both spin ↑ and ↓ electrons are
gapless at ±K, resulting in spin-degenerate nodes at ±K and non-
Majorana nodal quasiparticles. The low-energy Hamiltonian for these
gapless quasiparticles can be determined from Eqs. 3 and 4.
Majorana nodes on rotation axis.
The type of chiral pairing that gives rise to the Majorana nodal
quasiparticles—the focus of this work—corresponds to J = 2j
mod n. This implies odd J, and we list all these cases in Table 1.
Except for two cases n; jð Þ ¼ 2; 12

� �
and 6; 32

� �
(to be addressed sep-

arately later), we have 2j ≠ −2j mod n. Under this condition, the
spin ↑ states that carry angular momentum j are allowed to (and
generally will) pair up and form Cooper pairs that carry total angular
momentum 2j, whereas the spin ↓ states remain gapless at ±K because
of the angular momentum mismatch. The resulting nodal quasiparti-
cles are therefore spin-nondegenerate Majorana fermions.

The low-energy Hamiltonian for these quasiparticles is given by

H ¼ ∑
q
xqðc†q1cq1 þ c†�q2c�q2Þ þ ðDqc

†
q1c

†
�q2 þH:c:Þ ð5Þ

where we have defined cq1,2 ≡ c±K+q↓ and Dq ≡ D2,q. In addition,
xq ≡ eK+q − m, where ek is the single-particle energy-momentum
relation and m is the chemical potential. For small q, we have xq =
vFqz, where vF = kF/m is the Fermi velocity in the ẑ direction.

It is instructive to write H in Nambu space by introducing the
four-component fermion operator Y†

q

Y†
q ¼ ðc†q1; c†q2; c�q1; c�q2Þ ð6Þ
Table 1. Classification of pairing potentials. Summary of the classifica-
tion of pairing potentials Dq≡D2,q of the spin ↓ states c†±Kþq↓ to lowest
order in (q+, q−), with q± = qx ± iqy. The potentials are classified for a given
combination of (n, j), where n describes an n-fold rotation axis and j is the
spin angular momentum. The chiral superconductor has total angular mo-
mentum 2j, and the effective orbital angular momentum of Dq is given by l.
Cn
 j
 J = 2j
 l (mod n)
 Pairing Dq
n = 2
 j ¼ 1
2
 J = 1
 l = 0
 º 1
n = 3
 j ¼ 1
2
 J = 1
 l = −1
 º q−
n = 4

j ¼ 1

2
 J = 1
 l = −2,2
 ºq2�; q
2
þ

j ¼ 3
2
 J = 3
 l = −2,2
 ºq2�; q

2
þ

n = 6
j ¼ 1
2
 J = 1
 l = 2
 ºq2þ
j ¼ 3
2
 J = 3
 l = 0
 º 1
j ¼ 5
2
 J = 5
 l = −2
 ºq2�
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so that H can be expressed as

H ¼ 1
2
∑
q
Y†

qH qð ÞYq ð7Þ

with the 4 × 4 matrix H(q) taking the general form

H qð Þ ¼
xq 0 0 Dq

0 x�q �D�q 0
0 �D*

�q �x�q 0

D*
q 0 0 �xq

0
BBB@

1
CCCA ð8Þ

The four-component quantum field Y satisfies the same reality
condition as Majorana fermions in high-energy physics, which
reads asY†

q ¼ ðtxY�qÞT in momentum space or, equivalently,Y†
r ¼

ðtxYrÞT in real space, where the Pauli matrix tx acts on Nambu
space and YT is the transpose of Y. This reality condition demon-
strates that the low-energy quasiparticles can be regarded as Majorana
fermions in three dimensions.

At small q, the pairing term Dq in Eq. 8 can be expanded in
powers of q+ or q−. The exponent is determined by the mismatch
between the angular momentum of the Cooper pair J = 2j and that
of the spin ↓ pairing operator G2 at q = 0, which is equal to − 2j.
Hence, one finds that

Dqº½qx þ i sgnðlÞqy�jlj with l ¼ 4 j mod n ð9Þ

The smallest allowed integer |l| gives the form of Dq to the
leading order. For any given (n,j) and with J = 2j fixed, the
corresponding l is listed in Table 1 (additional details can be found
in the Supplementary Materials).

From Table 1, we find three types of pairing terms Dq with differ-
ent l’s, which give rise to two types of Majorana fermions with different
energy-momentum relations. First, for n; jð Þ ¼ 3; 12

� �
, one has l = 1mod n;

hence, |Dq| º q⊥, where we defined q⊥ ¼ ðq2x þ q2yÞ1=2. This implies
that the quasiparticles near the nodes ±K disperse linearly with q in all
directions, as governed by the following effective Hamiltonian to first
order in q

HðqÞ ¼ vFqzsz þ vDsxðqytx � qxtyÞ ð10Þ

where sz = ±1 denotes the two nodes ±K, and vD is defined via
|Dq| = vDq⊥ + O(q2). Except for the velocity anisotropy, H(q) is identical
to the relativistic Hamiltonian for Majorana fermions in particle physics.

Second, we find several cases for which l = ±2 mod n. According
to Eq. 9, this implies that the gapless quasiparticles disperse quadrat-
ically in qx , qy and linearly in qz (see Table 1), as governed by the
following effective Hamiltonian H(q) to second order in q

H qð Þ ¼ vFqzsz þ 1
2mD

sy ðq2x � q2yÞty þ 2qxqytx
h i

ð11Þ

where mD is an effective mass defined by Dq

�� �� ¼ q2⊥=ð2mDÞ.
In the case of fourfold rotational symmetry, that is, n = 4, both

q2þ and q2� terms, with angular momenta of l = 2 and −2, respec-
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
tively, are allowed inDq. As a result, the HamiltonianH(q) takes amore
involved form, which is discussed in the Supplementary Materials.

The above cases of chiral pairing with |l| = 1 and 2 both give rise
to gapless Majorana quasiparticles at ±K. According to Table 1,
there are two remaining cases that both have l = 0 mod n: n; jð Þ ¼
2; 12
� �

and 6; 32
� �

. The property l = 0 mod n implies that spin ↓ states
at ±K are allowed to pair and form a Cooper pair G2

q¼0 ¼ c†K↓c
†
�K↓

carrying the same angular momentum 2j = −2j mod n as the spin ↑
Cooper pair G1

q¼0 ¼ c†K↑c
†
�K↑. As a result, both Cooper pairs coexist

in the superconducting state and generate a full gap at ±K.
Spin-orbit coupling and nonunitary pairing.
It is clear from our derivation of the Majorana nodal quasiparticles
that these can only be present in chiral superconductors with non-
unitary gap structures, that is, with a spin-nondegenerate quasiparticle
spectrum, such that spin ↑ and ↓ states have different gaps (9). So far,
nonunitary superconductors have received much less attention than
their unitary counterparts. Although nonunitary pairing states have
been discussed in relation to UPt3 (10–13), to Sr2RuO4 (2, 14, 15),
and recently to LaNiGa2 (16, 17), the only established example of non-
unitary pairing is superfluid 3He in high magnetic fields (18), known
as the A1 phase. However, from a symmetry point of view, nonunitary
pairing is generic and more natural (in a theoretical sense) in chiral
superconductors with strong spin-orbit coupling. This is a consequence
of the lack of spin-rotation symmetry, replaced by the symmetry of
combined spin and momentum rotation under the crystal point
group. In these cases, there are typically more than one pairing
components with different spin S or orbital angular momentum
L but the same total angular momentum J = L + S. As a result,
the full bulk gap function Dk of the chiral superconductor, defined with
HD ¼ ∑kðiDksyÞabc†kac†�kb þH:c: , is generally a mixture of these
pairing components, which all belong to the same irreducible repre-
sentation of the point group. Specifically, Dk can be written as

Dk ¼ D0∑
t
ltF

J
t ðkÞ ð12Þ

where FJ
t ðkÞ are pairing components (that is, crystal harmonics) with

total angular momentum J but different L and S, and lt are di-
mensionless coefficients describing the admixture of these different
components. For each pairing channel J, the set of allowed pairing
componentsFJ

t ðkÞdepends on both the point group symmetry of the
crystal and the spin angular momentum j. In Table 2, we present a
full list of gap function components FJ

t ðkÞ for trigonal (C3), tetrago-
nal (C4), and hexagonal (C6) superconductors and for general spin
angular momentum j. Table 2 thus generalizes standard gap function
classifications for j ¼ 1

2 Bloch electrons (19) and applies to energy
bands of, for instance, j ¼ 3

2 electrons, such as reported in the half-
Heusler superconductors YPtBi and LuPtBi (20, 21). In addition, the
heavy fermion superconductor UPt3 has recently been proposed to
have j ¼ 5

2 bands (22).
As an example of Dk in Eq. 12, consider the following gap function

of a J = 1 superconductor of j ¼ 1
2 electrons, consisting of two pairing

components with (L, S) = (1, 0) and (L, S) = (0, 1), respectively

Dk ¼ D0

kF
lakþsz þ lbkzsþð Þ ð13Þ

where we defined k± = kx ± iky and s± = sx ± isy. It is straightforward
to verify that the pairing is nonunitary as a result of the second
3 of 14
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(L, S) = (0, 1) term. The first term of Eq. 13 corresponds to the gap
function of the A phase of superfluid 3He (3). The spin-degenerate
quasiparticle spectrum of the 3He-A phase hosts Weyl fermions at
low energies (23, 24), which can be viewed as a complex quantum field
made up of two degenerate Majorana fields. The admixture of the
(L, S) = (0, 1) component, which is enabled by spin-orbit coupling,
gaps out the spin ↑ states at ±K and gives rise to gapless spin ↓ excita-
tions governed by Hamiltonian (Eq. 11) (Supplementary Materials).

This example illustrates a general feature of spin-orbit–coupled
chiral superconductors: The lack of spin-rotation symmetry naturally
leads to nonunitary pairing, which serves as a spin-selective gapping
mechanism and creates spin-nondegenerate nodal excitations, obeying
the Majorana reality condition.

As we pointed out earlier, the Majorana condition makes the quan-
tum field Yq a four-component real field. One may be tempted to
rewrite Eq. 5 in terms of a two-component complex quantum field,
f †q ≡ðc†q1; c�q2Þ: H ¼ f †q ðxqsz þ Dqsþ þ D�

qs
�Þfq , which is invariant

under the U(1) transformation, f †→ f †eif. However, thisU(1) symmetry
is only present in the presence of translational symmetry and broken by
impurity-induced potential scattering between the nodes. To see this, con-
sider the spin-conserving internode scattering term

Hs ¼ ∑
q
Mðc†q1cq2 þ c†q2cq1Þ ð14Þ
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
where M is the scattering amplitude at the momentum 2kF. In terms of
the complex field f †q ,Hs involves f †q f

†
�q terms and thus removes the emer-

gent U(1) symmetry in the clean limit. In terms of the four-component
Majorana field Y, Hs is given by

Hs ¼ M∑
q
Y†

qsxtzYq ð15Þ

Including Eq. 14 in the Majorana Hamiltonian (Eq. 8), the energy E of
the Majorana nodes with linear dispersion, Eq. 10, is given by E2 ¼
ðvFqzÞ2 þ v 2Dðq2

x þ q2
y Þ þM2 . Thus, the effect of internode scattering

is to generate a mass term without U(1) symmetry, that is, a Majorana
mass term. As a result, the fundamental quantum field describing the
gapless quasiparticles is a four-component real field, that is, a field
obeying the Majorana condition.

We note that spin-nondegenerate point nodes also occur when the
Fermi surface in the normal state is already spin-split due to magnetism—
as theoretically shown in magnetic topological insulator-superconductor
heterostructures (25) and ferromagnetic p-wave superconductors
(26) and in the mixing of chiral d- and p-waves (27)—or spin-orbit
coupling in noncentrosymmetric superconductors (28–37). This is dif-
ferent from our case, where the spin-selective point nodes occur via
nonunitary pairing in a spin-degenerate normal state. Also, the present
case of nonunitary pairing does not assume any special feature in the
band structure and should be distinguished from theoretical surveys of
possible pairing states in Weyl and Dirac semimetals (38–45).
Off-axis point nodes.
A key result of our symmetry analysis presented in the first part of
this section is the presence of nodal Majorana excitations at the
rotationally invariant Fermi surface momentum K on the principal
rotation axis for nonzero l mod n (see Eq. 9). Rotational symmetry
further dictates the form of the energy-momentum dispersion of these
on-axis Majorana quasiparticles. We find that spin-orbit–coupled
odd-parity chiral superconductors can have additional point nodes lo-
cated at generic Fermi surface momenta away from the north and
south poles, that is, off-axis Majorana nodes. We will first illustrate
the presence of these point nodes using examples and then explain
their topological origin.

As a first example, let us consider a chiral superconductor with C3

symmetry and angular momentum J = 1. We now show that its gap
structure can exhibit nodes at Fermi surface momenta other than ±K.
The full pairing potential Dk of Eq. 12 is given to leading p-wave order
by (see the Supplementary Materials for details)

Dk ¼ D0

kF
lakþsz þ lbkzsþ þ lcik�s�ð Þ ð16Þ

where la,b,c are three real admixture coefficients. In addition to
the on-axis nodes at k = ±K, the quasiparticle spectrum cor-
responding to Dk of Eq. 16 exhibits six nodes located at off-axis
Fermi surface momenta. Writing the Fermi momenta as kF ¼
kFðcos fkF sinqkF ; sinfkF sin qkF ; cos qkFÞ, the location of these nodes

can be expressed as the relations cos qkF ¼ ±l2a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4a þ 16l2bl

2
c

q
and

sin 3fkF ¼ ∓1 (here, we have assumed lblc > 0. If lblc < 0, one
should substitute fkF→�fkF). There are three nodes on the northern
Fermi surface hemisphere, which are related by threefold rotation C3,
and each of these nodes has a partner on the southern hemisphere
related by inversion P, as shown in Fig. 1C.
Table 2. Complete set of gap functions for chiral spin-orbit–coupled
superconductors. List of allowed gap function components FJt ðkÞ of Eq.
12 for the chiral pairing channels J = 1,2,3, (pseudo)spin angular mo-
mentum j ¼ 1

2 ;
3
2 ;

5
2, and crystal rotation symmetries Cn with n = 3,4,6. For

each combination (J, j), a complete set of components is given; any other
allowed gap function component FJt ðkÞ is generated by multiplying with
fully point group symmetry invariant functions (19). Because angular
momenta are only defined mod n, some entries in the table are
equivalent, for example, 2; 12

� �
≅ �1; 12
� �

under C3 symmetry, where
�1; 12
� �

is the time-reversed partner of 1; 12
� �

. Recall that s± = sx ±isy and
sx,y,z are Pauli matrices acting on the Bloch electron (pseudo)spin.
(J, j)
 Trigonal (C3)
 Tetragonal (C4)
 Hexagonal (C6)
1; 12
� �
kþsz ; kzsþ; k�s�;
kzk2þs�

kzk2�sz ; ðk3þ � k3�Þsþ

k
þsz ; kzsþ; kzðk4þ � k4�Þsþ
kzk2þs�; kzk

2
�s�; k

3
�sz
kþsz ; kzsþ; kzk2þs�
k5�sz ; kzk

4
�s�; kzk

6
�sþ
1; 32
� �
k+sz, k+s+, k+s−
kzk2�sz ; kzk

2
�sþ; kzk

2
�s�
kþsz ; kzs�; k3�sz
kzk2�sþ; kzk

2
þsþ; kzk

4
þs�
kþsz ; kzk2�sþ; kzk
2
�s�

k5�sz ; kzk
4
þsþ; kzk

4
þs�
1; 52
� �
k+sz, k−s+, kzs−
k3þs�; kzk

2
�sz ; kzk

2
þsþ
kþsz ; k3�sz ; kzk
4
þsþ

kzsþ; kzk2þs�; kzk
2
�s� k
kþsz ; k5�sz ; kzs�
zk2þsþ; kzk

4
�sþ; kzk

6
þs�
2; 12
� �
≅ �1; 12
� �
kþsþ; k�s�; kzk2þsz
k3þs�; k

3
�sþ; kzk

2
�sz
kþsþ; kzk2þsz ; kzk
4
�sz

k3þs�; k
3
�s�; k

5
�sþ
2; 32
� �
≅ �1; 32
� �
kþs�; kzk2þsz ; k
3
þsþ

k�sþ; kzk2�sz ; k
3
�s�
kzk2þsz ; k�sþ; k�s�
kzk4�sz ; k

5
þsþ; k

5
þs�
2; 52
� �
≅ �1; 52
� �
kzk2þsz ; kzk
2
�sz ; kþsþ

k3�sþ; k�s�; k
3
þs�
kzk2þsz ; kzk
4
�sz ; kþs�

k5�s�; k
3
�sþ; k

3
þsþ
3; 12
� �
≅ 0; 12
� �
≅ �1; 12
� �
k3þsz ; kzk
2
þsþ; kzk

4
þs�

k3�sz ; kzk
2
�s�; kzk

4
�sþ
3; 32
� �
≅ 0; 32
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As a second example, consider a J = 1 superconductor with a
twofold rotational symmetry C2. The pairing potential Dk is composed
of all terms that are odd under C2, and to p-wave order in spherical
harmonics is given by

Dk ¼ D0

kF
ðlakþ þ lbk�Þsz þ kzðlcsþ þ lds�Þ½ � ð17Þ

At the Fermi surface momentum K, one has DK = D0(lcs+ + lds−),
which implies a pairing gap for both c±K+q↑ and c±K+q↓, in agreement
with the result shown in Table 1. Although no nodes exist on the
twofold z axis, it is straightforward to verify that for general nonzero
admixture coefficients, two pairs of nodes are located on the Fermi
surface, each pair related by twofold rotation with the partners of a pair
related by the inversion P. For instance, taking lb = 0 (la = 0), the
nodes are located on the intersection of the Fermi surface with the
yz (xz) plane, as shown in Fig. 1D.

In both these examples, all point nodes located at generic rota-
tion noninvariant Fermi surface momenta are spin-nondegenerate,
and the gapless quasiparticles are therefore Majorana fermions. We
call these nodes off-axis Majorana nodes. The presence of the off-
axis Majorana nodes in these examples motivates the question of
whether these are accidental or whether the off-axis nodes are re-
lated to the Majorana nodes on the rotation axis at a deep level.

We now address this question by focusing on the topological
nature of the Majorana point nodes. We show that the classification
of different types of low-energy Majorana quasiparticles in terms of
location on the Fermi surface (that is, on- or off-axis) and energy-
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
momentum dispersion (that is, linear or quadratic) is linked to a
topological property of point nodes in momentum space.

In band theory, crossing points of (quasiparticle) energy bands
are endowed with an integer topological quantum number given by
the Chern number C defined as

C ¼ 1
4p
∫WF⋅dS ð18Þ

Here, F = ∇k × A(k) is the Berry curvature, that is, the field
strength of the momentum space gauge Berry connection A(k), which
is integrated over a surface W, enclosing the point node. Hence, C
quantifies the Berry curvature monopole strength of the point node.
Because monopoles cannot be removed unless they annihilate with a
monopole of equal but opposite strength, point nodes, which carry a
nonzero monopole charge, are topologically protected.

It is straightforward to show that the Majorana nodes with linear
dispersion described in Eq. 10 have a monopole charge C = ∓1 at
±K, similar to Weyl fermions in topological semimetals (46, 47),
and that the Majorana nodes in Eq. 11, which disperse quadratically
tangential to the Fermi surface, have a monopole charge C = ±2, sim-
ilar to double-Weyl fermions (48). Therefore, the former may be
called single Majorana nodes and the latter double Majorana nodes.
These single and double on-axis Majorana nodes, corresponding to
C3 and C4,6 symmetry, respectively, are schematically shown in Fig. 1,
with the monopole charge C explicitly indicated.

From the perspective of topology, the presence of the off-axis
Majorana nodes in superconductors with C3 or C2 can be understood
from monopole charge conservation. For instance, the C3-symmetric
A

B

C D

Fig. 1. Schematic structure of Majorana point nodes of spin-orbit–coupled chiral superconductors with total angular momentum J = 1 with an n-fold (n = 2, 3, 4, 6)
rotation axis along z. Two types of Majorana nodes are shown: on- and off-axis nodes. Whereas the former are pinned to the rotation axis (that is, ±K), the latter appear at generic
Fermi surface momenta. (A) C6-symmetric case with double Majorana nodes at ±K. (B) C4-symmetric case. (C andD) C3- and C2-symmetric cases, respectively, including a view from
the top (projection on the xy plane). The gap structure of the C3-symmetric superconductor has both on- and off-axis nodes, whereas that of the C2-symmetric superconductor
only has off-axis nodes. Nodes with a positive (negative) monopole charge C (see Eq. 18) are indicated by solid black (white) dots, with the monopole charge (that is, C = ±1,
±2) explicitly given. In case of C4 symmetry, the sign of the Majorana node monopole charge at ±K depends on microscopic details (see the Supplementary Materials).
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superconductor with the gap function 16 can be viewed as a descend-
ent of the C6-symmetric superconductor with the gap function 13, ob-
tained from lowering the symmetry. As a result of lower symmetry,
additional gap functions can mix in with the J = 1 channel, and
according to our symmetry analysis, this transforms the C = 2 double
Majorana node at K of a C6 superconductor into a C = −1 Majorana
node at K of a C3 superconductor. Because the total monopole charge
must be conserved and the gap structure must preserve the C3

symmetry, three additional point nodes with a monopole charge of
C = +1 must exist. This effective “splitting” of a C = 2 Majorana node
into four single nodes agrees with the explicit analysis in Eq. 16 and is
schematically shown in Fig. 1. An analogous argument explains the
existence of two C = +1 off-axis Majorana nodes in the case of the
C2-symmetric superconductor, which has a full pairing gap at K.
The nodal structure of the C2 superconductor is depicted in Fig. 1.
It is therefore natural to think of the off-axis Majorana nodes as orig-
inating from the on-axis double Majorana nodes in a J = 1 super-
conductor, obtained by lowering C6 or full rotational symmetry to
trigonal (C3) and orthorhombic (C2) symmetry.

These topological arguments demonstrate that the chiral super-
conductors discussed here are topological nodal superconductors.
Topological nodal superconductors are superconductors with topo-
logically protected gapless quasiparticle excitations in the bulk, in
analogy with the protection of Weyl fermions in Weyl semimetals
(see also the “Surface Andreev bound states: Majorana arcs” section)
(46, 47). In particular, the gapless Majorana quasiparticles are topolog-
ically protected by monopole charge conservation.

Detecting 3D Majorana fermions
Here, we explore ways to detect the 3D Majorana nodal quasiparticles
in chiral spin-orbit–coupled superconductors. Because the Majorana
fermions arise as a result of a spin-selective gapping mechanism as-
sociated with nonunitary pairing, we first address the experimentally
observable consequences of nonunitary pairing from a general perspec-
tive and then turn to a specific probe sensitive to the spin-polarized
low-energy Majorana quasiparticles—the NMR spin relaxation rate.
Signatures of nonunitary chiral superconductors.
The nonunitary gap structure of chiral spin-orbit–coupled super-
conductors gives rise to a number of distinctive experimental sig-
natures. The most prominent characteristic of nonunitary pairing,
the nondegenerate quasiparticle excitation spectrum, leads to a
spin-dependent density of states: The densities of states N↑,↓(E) for
(pseudo)spin ↑,↓ excitations are unequal [that is, N↑(E) ≠ N↓(E)],
and in particular, the low-energy branch of the spectrum consists
of fully spin-polarized states near the point nodes. As a conse-
quence of the nondegenerate spectrum, the total density of states
∑aNa(E) can exhibit two distinct peaks, rather than a single peak
at D0, which is characteristic of conventional s-wave superconductors.
This can lead to a two-gap–like feature in the specific heat, as is dem-
onstrated more explicitly in simple examples in the Supplementary
Materials. Therefore, experimental signatures that are commonly
attributed to multiband superconductivity may actually originate from
nonunitary pairing in a single band.

A well-known and discriminating property of nodal superconduc-
tors is the characteristic temperature dependence of a diverse set of
dynamic and thermodynamic quantities, such as the electronic part
of the specific heat, the London penetration depth, and the NMR spin
relaxation rate (T�1

1 ) (49). The low-energy branch of the quasiparticle
spectrum of chiral nonunitary superconductors consists of C = ±1 or
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
C = ±2 point nodes, which implies that the density of states N(E) in
the regime E≪ D0 takes the form N(E)/N0 ~ (E/D0)

n, where N0 is the
normal-state density of states. The exponent n depends on the nature
of the point node: It equals n = 2 for C = ±1 and n = 1 for C = ±2. The
form of the density of states at the nodes is responsible for the typical
power law temperature dependence of the specific heat, the penetra-
tion depth, and the spin relaxation, which probe the density of
quasiparticle states, at temperatures T ≪ Tc ~ D0.

In the next section, we consider the NMR spin relaxation rate in
more detail. In the case of chiral superconductors with low-energy
Majorana quasiparticles, not only should the spin relaxation rate
T�1
1 exhibit power law temperature dependence at low temperatures,

but the temperature dependence of T�1
1 is also expected to crucially de-

pend on the direction of the nuclear spin polarization. This follows
from the fact that the only quasiparticle excitations available at low
energy are spin ↓ states, which is intimately related to the nonunitary
nature of the superconducting state. Therefore, we derive below the
theory of NMR spin relaxation in nonunitary superconductors, which
serves as a powerful tool to identify Majorana nodal quasiparticles.
NMR: Spin relaxation rate.
The measurement of the NMR spin-lattice relaxation rate 1/T1 at low
temperature is a well-established experimental technique to probe the
gap structure of superconductors. The temperature dependence of 1/T1
at temperatures T ≪ Tc ~ D0 can be used as a measure of the density
of low-energy quasiparticle states and allows to distinguish fully
gapped, point nodal gap, and line nodal gap structures (9).

The coupling of quasiparticle states to the nuclear spin originates
from the hyperfine interaction between the nuclear spin and itinerant
electrons. The hyperfine coupling Hamiltonian Hhf is given by

Hhf ¼ gNAhf∑
kk′
gijðk; k′ÞŜic†kasjabck′b ð19Þ

where S
^ i are the components of the nuclear spin operator and si are

Pauli matrices representing the electron pseudospin (summation of
repeated spin indices a, b is implied). Furthermore, gN is the gyromag-
netic ratio of the nuclear spin, Ahf is the hyperfine coupling constant,
and gij(k, k′) is a momentum-dependent tensor describing the coupling
of the nuclear spin to the pseudospin of electrons in spin-orbit–coupled
materials. The form of this tensor can be complicated and material-
specific. However, because only quasiparticles around the nodes con-
tribute to the spin relaxation at low temperature, it suffices to consider
gij(k, k′) at the nodes, a key simplification that enables us to find uni-
versal features of the spin relaxation rate below.

Our aim is to derive 1/T1 for chiral nonunitary superconductors
hosting 3D Majorana fermions. Because the Majorana nodes are
nondegenerate with definite pseudospin, the low-energy quasipar-
ticles couple anisotropically to the nuclear spin. To demonstrate this,
consider the case of gapless Majorana particles pinned to ±K. Project-
ing the Hamiltonian (Eq. 19) into the space of Bloch states near ±K (P
projects onto the low-energy Hilbert space), one finds

PHhfP ¼ gNAhf∑
qq0
Ŝ
z½g1zzc†q1cq′1 þ g 2

zzc
†
q2cq′2þ

g3zzc
†
q1cq′2 þ g3*zz c

†
q2cq′1� ð20Þ
where g1 = g(K, K), g2 = g(−K, −K), and g3 = g(K, −K) are the g
tensors evaluated at the nodes. Only the z component of the nuclear
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spin enters the low-energy Hamiltonian due to the rotational sym-
metry of the crystal around the z axis. As a result, we expect that the
nuclear spin relaxation time 1/T1 is highly direction-dependent and, to
leading-order approximation, diverges when the nuclear spin is initially
polarized along the z direction.

As we show below, the strongly anisotropic spin relaxation rate is a
generic consequence of spin-selective nodes, whereas the divergence
for nuclear spin polarization along the nodal direction is an artifact
of the leading-order Hamiltonian (Eq. 20). We now go beyond this
leading-order approximation and expand the full form factor gij(k, k′)
into crystal spherical harmonics. Keeping the lowest-order s-wave
component, we have gij(k, k′) ~ dij, reducing the hyperfine coupling to

Hhf ¼ gNAhf∑
kk0
Ŝ
i
c†kas

i
abck0b ð21Þ

Using Eq. 21, we proceed to explicitly calculate the NMR relaxation
rate 1/T1 for a nonunitary superconductor. For simplicity, we consider
a nuclear spin of S = 1/2. The spin relaxation rate 1/T1 is expressed
through the transverse spin susceptibility c−+(k, w) (that is, transverse
to nuclear spin direction) and reads as (50, 51)

1
T1

¼ g2NAhf
2T lim

w→0
∑
k

Imc�þðkwÞ
w

ð22Þ

When evaluating 1/T1, it is important to distinguish unitary and
nonunitary pairing states. In the case of former, it has been shown that
the spin relaxation rate does not depend on the direction of polarization
of the nuclear spin (reviewed in the Supplementary Materials). The case
of nonunitary pairing requires separate and more careful treatment. For
concreteness, we first consider the C6-symmetric J = 1 superconductor,
which only has double nodes at ±K. Other nodal nonunitary supercon-
ductors are discussed toward the end of this section.

The gap structure of the J = 1 superconductor with C6 symmetry
is given by Eq. 13. The full BdG Hamiltonian is diagonalized in
terms of Bogoliubov quasiparticle operators, which we define as aka.
Writing the hyperfine interaction Hamiltonian (Eq. 21) in terms of the
Bogoliubov quasiparticle operators, the spin susceptibility can be read-
ily evaluated. Because only low-energy excitations contribute to the
relaxation rate at low temperatures (that is, ~T ≪ D0 min{la,lb}), we
can restrict to Bogoliubov quasiparticle states with small momenta q
relative to ±K and only keep the low-energy gapless states aq
corresponding to energiesEq ¼ ½x2q þ ðq2⊥=2mDÞ2�1=2 (see Eq. 11), where
q⊥ ¼ ðq2x þ q2yÞ1=2. Then, to the leading order in small momentum q, the
Hamiltonian (Eq. 21) reads as

Hhf ≅ gNAhf ∑
qq0pp0

a†qpaq0p0 ½ŜzFpp0 ðq; q′Þ þ
p′Ŝ�Gðq; q′Þ þ pŜþG*ðq′; qÞ� ð23Þ
with the form factors Fpp0ðq; q′Þ and G(q, q′) defined as

Fpp0 q; q′ð Þ ¼ 1
2q⊥q⊥′

qþq�0P� � q�qþ0pp′Pþð Þ

G q; q′ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8mD

~D0

p q⊥qþ′
q⊥′

Pþ � qþq⊥′
q⊥

P�

� �
ð24Þ
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
and the momentum-dependent factors P± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 ± xq=EqÞð1 ± xq′=Eq′Þ

q
.

Here, p, p′ = +1 (−1) for the north (south) node.
In Eq. 23, the anomalous terms aqaq′ and a†qa

†
q′ have been

omitted because they do not contribute to 1/T1 due to energy con-
servation. The effective mass mD of the Bloch states c±K↓ and energy
~D0 associated with the Bloch states c±K↑ are defined in terms of gap
function parameters in the Supplementary Materials. Equation 23,
which is the projection of Hamiltonian (Eq. 19) into the space of
low-energy Bogoliubov quasiparticles, should be compared to the
projection into the space of low-energy Bloch states given in Eq. 20.
The former contains a coupling to Ŝ± = Ŝx ± iŜy, originating from the
nonzero support of the Bogoliubov quasiparticle states on the Bloch
electron states c±K+q↑. The support is vanishingly small near the nodes
as a result of q±=ðmD

~D0Þ1=2ºq±=kF≪1, indicating a suppression of
the spin relaxation rate for a nuclear spin initially polarized along
the z direction. In the limit that this coupling is strictly absent, as
in Eq. 20, the spin initially polarized along the z direction does
not relax.

Using the projection of the hyperfine coupling into the space of low-
energy Bogoliubov quasiparticles given by Eq. 23, it is straightforward
to calculate the NMR relaxation rate given by Eq. 22 in the low-
temperature limit T ≪ D0 min{la,lb} (Supplementary Materials).
We find 1/T1 to be given by

1
T1

¼ D⊥T
3S2⊥ þ Dz

T4

~D0
S2z ð25Þ

where S⊥ and Sz are the projections of the nuclear spin polarization
on the xy plane and z axis, respectively, and the coefficients D⊥,z are
given by

D⊥ ¼ g2NA
2
hf

p
96

mD

vF

� �
2
; Dz ¼ g2NA

2
hf
9zð3Þ
4p2

mD

vF

� �
2

ð26Þ

Equation 25 proves that there is a strong anisotropy of spin re-
laxation depending on the polarization of the nuclear spin. For a
nuclear spin polarized perpendicular to the z axis, the spin relaxa-
tion behaves as 1/T1 ~ T3, as expected for C = ±2 point nodes with
quadratic dispersion and linear dependence of density of states on
energy. Instead, for a nuclear spin polarized along the z axis, the spin
relaxation rate is suppressed by a factor of T=~D0, that is, the zeroth-
order term in an expansion in T=~D0 is absent.

The strong relaxation rate anisotropy can be intuitively understood
from a simple physical picture. The hyperfine interaction leading to
nuclear spin relaxation is given by Eq. 21, and consequently, nuclear
spin relaxation occurs simultaneously with an electron spin flip. How-
ever, at low energies, only the c±K+q↓ Bloch states are available, im-
plying that a nuclear spin initially polarized along z is vanishingly
improbable to relax. This physical picture is captured by Eq. 20. The
qualitative difference of this result compared to the case of unitary
pairing (9) can be understood in a similar way. In the case of the latter,
the quasiparticle energy spectrum is doubly degenerate, implying that
both spin species are present and, consequently, leading to the same
temperature dependence of 1/T1 for all nuclear spin polarizations.

A qualitatively similar anisotropic spin relaxation rate has been
predicted for 2D Majorana fermions, which live on the surface of a 3D
topological superfluid, that is, the 3He-B phase (52, 53). In this case,
7 of 14
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where the 2D surface Majorana modes are described by a two-
component real quantum field, the anisotropy in the spin relaxation
arises because one can only construct the Ising spin operator, which
points perpendicular to the surface and takes the form of a Majorana
mass term. This is different from our case, that is, with the 3DMajorana
fermions, where the spin operator constructed from the low-energy
quasiparticles does not correspond to a mass term.

On the basis of the result for the J = 1 superconductor with C6

symmetry and quadratic point nodes at ±K (Eq. 25), we now com-
ment on other chiral nonunitary superconductors. First, consider the
J = 1 superconductor, with C4 symmetry shown in Fig. 1 and dis-
cussed in more detail in the Supplementary Materials. Because the
C4-symmetric superconductor only has on-axis Majorana nodes
with C = ±2, Eq. 25 remains valid, and a significant suppression
of 1/T1 for the nuclear spin polarized along the z axis is expected.

Next, consider the J = 1 superconductor with C3 symmetry with
gap function 16. In this case, the low-energy gap structure consists
of eight single Majorana nodes (that is, linear dispersion), two of
which are located at ±K, and six at off-axis Fermi surface momenta
(see Fig. 1). This nodal structure complicates the explicit derivation
of an analytical expression for 1/T1, but the final result, however,
can be inferred from the C6 symmetric case. For a weak trigonal
anisotropy and intermediate temperatures given by the condition
D0lc < T < D0 min{la, lb}, the trigonal lc term can be neglected,
and one can expect the same behavior as in the hexagonal case with
the relaxation rate given by Eq. 25.

However, at the lowest temperatures given by T≪ D0 min{la, lb, lc},
the linear dispersion of the nodes comes into play: The density of
states becomes a quadratic function of energy, leading to 1/T1 ~ T5.
Whereas at the on-axis nodes only quasiparticles with definite spin
↓ are available at low energies, the low-energy quasiparticles at the
off-axis nodes are mixtures of spin ↑ and ↓. As a result, the temper-
ature dependence of 1/T1 will exhibit the same power law behavior,
that is, ~T5 for all nuclear spin polarizations. However, the numer-
ical prefactors will reflect a directional anisotropy, which may be
large.

Superconductors with C2 symmetry, due to the four off-axis
linear nodes, are expected to show behavior similar to C3 crystals,
exhibiting strong anisotropy in the functional temperature
dependence at intermediate temperatures and point node power
law behavior at the lowest temperatures for all nuclear spin polar-
izations. Again, numerical prefactors will generically be different.

Surface Andreev bound states: Majorana arcs
Chiral superconductors with point nodal quasiparticle excitations
are topological nodal superconductors due to the nonzero Berry
monopole charge of the point nodes (54), as discussed following
Eq. 18. Through the bulk-boundary correspondence, the topological
nature of the bulk superconducting state is reflected on a surface
boundary separating the superconductor from the vacuum or, equiv-
alently, a gapped s-wave superconductor. The surface Andreev bound
states of topological nodal superconductors take the form of arcs in
surface momentum space, connecting the projections of the topological
bulk nodes onto surface momentum space, as schematically shown in
Fig. 2. A canonical example of surface states in nodal topological
systems is the surface Fermi arcs of the superfluid 3He-A phase, which
originate from and terminate at projections of the bulk Weyl nodes
(55, 56). A similar surface state structure has been explored in the con-
text of UPt3 (57).
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
Weyl nodal fermions have recently attracted a great deal of at-
tention in semimetallic materials, referred to as Weyl semimetals
(46, 47, 58–60), which are semimetals with nondegenerate point
nodal touchings of bulk energy bands, associated with nonzero Ber-
ry monopole charge, and Fermi arcs on the surface. The Weyl
semimetal state has recently been predicted and observed in the
TaAs materials class (61–68) and photonic crystals (69–71). The
superconducting analog of Weyl semimetals was first considered
by Meng and Balents (25) based on a topological insulator–s-wave–
superconductor heterostructure model. The surface arcs connect the
projections of the nondegenerate bulk nodes in the Bogoliubov
quasiparticle spectrum, and because of the redundancy built into
the BdG mean-field description, these surface arcs are Majorana arcs.

In general, nodal touchings of energy bands can only occur
when at least one of two symmetries, time-reversal Q or inversion
P symmetry, is broken (72). The experimentally found Weyl semi-
metals in TaAs and related materials all break inversion symmetry,
and although much effort has been devoted to looking for time-
reversal breaking Weyl semimetals (46, 48, 58, 59, 73–80), their
conclusive observation in materials remains an open challenge.

The chiral superconductors in this work break time-reversal
symmetry and have odd-parity pairing, implying that they preserve
a Z2 symmetry, given by tzP (see the Supplementary Materials).
Hence, the only symmetry manifest at any surface is particle-hole
symmetry. Because the bulk point nodes are Majorana nodes, the sur-
face states of chiral nonunitary superconductors are Majorana arcs.

In this section, we calculate and study the structure of the Majorana
arcs of chiral nonunitary superconductors, with a focus on J = 1 super-
conductors with C6 and C3 symmetry with gap functions 13 and 16,
respectively. The profile of surface Majorana arcs depends on the
projections of the bulk Majorana nodes onto the surface and therefore
depends on boundary geometry. Here, we will consider two different
semi-infinite geometries: (i) a boundary in the xz plane, separating the
vacuum (y < 0) and the superconductor (y > 0), and (ii) a boundary in
the xy plane (that is, vacuum z < 0 and superconductor z > 0).

Starting with a boundary in the xz plane, the first quantized
Hamiltonian is given by HBdG(k, r) = HBdG(k)q(y), where HBdG(k) is
the (first quantized) BCS-BdG Hamiltonian of the superconductor with
pairing potential 13. We solve the equation HBdG(−i∇, r)Y(r) = EY(r)
for zero-energy solutions (E = 0), localized at the boundary, that is,
A B

Fig. 2. Schematic representation of Majorana arc surface Andreev bound
states of nodal superconductors. For a given surface termination, the projections
of the bulk Majorana nodes onto the surface momentum space (transparent gray
planes) are connected by the surface Majorana arcs (thick blue lines). The surface
Majorana arcs must start and terminate at nodes with opposite monopole charge.
(A) Arc structure on a side surface of the A phase of 3He. (B) Schematic arc structure
of C3-symmetric J = 1 chiral superconductor for a side surface in the y direction (see also
Fig. 3). The projection of bulk Majorana nodes (coming from northern Fermi surface
hemisphere) on the top surface is also shown (compare Fig. 3B).
8 of 14
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wave functions decaying exponentially at y → ∞ and satisfying the
Dirichlet boundary condition Y|y=0 = 0. In this geometry, kx and kz
remain good quantum numbers, and we substitute ky → −i∂y in
HBdG(k).

The gap function of a C6-symmetric superconductor, given by
Eq. 13, gives rise to nondegenerate C = ±2 bulk nodes at ±K. To
solve for the zero-energy states of the Majorana arcs, we look for a
general solution of the form Y(y) º exp(ay), with the condition
Rea < 0. The equation HBdG(−i∇y)Y = 0 then translates into a
polynomial in an a of degree eight, whose roots determine the
wave function solutions. The roots can be found explicitly and
are given by

a3ð4Þ ¼ a*1ð2Þ; a21;2 ¼ �k2⊥ þ 2~l
2
a þ 2i~lbkz

±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~l2a þ i~lbkzÞ2 � ~l

2
aðk2F � k2zÞ

q
ð27Þ

where we defined k⊥≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2x � k2z

p
and ~laðbÞ≡D0laðbÞ=vF, and the

eigenvalues with Rea1,2 < 0 are implied because only they can be
used to satisfy the localization condition Y|y→+∞ → 0. These four
eigenvalues are then used to construct the solution that satisfies the
Dirichlet boundary condition at y = 0, Y|y=0 = 0. This condition
results in the implicit equation for the zero-energy Majorana arc
profile in the kx − kz plane. The implicit equation reads as

kxða1 þ a2Þj j ¼ jk2⊥ � a1a2j ð28Þ

The resulting profile of (zero-energy) Majorana arc states is bow
tie–shaped in surface momentum space and is shown in Fig. 3A.
The zero-energy solutions are nondegenerate, apart from the sur-
face momentum (kx , kz) = (0, 0), but are related by particle-hole
symmetry. This profile should be compared to the fully degenerate sur-
face Majorana arcs of superfluid 3He-A, corresponding to lb = 0 in Eq.
13 and shown with a dashed line in Fig. 3A (see also Fig. 2). As a
result of the degeneracy of the two sheets of Majorana arcs, they
effectively form a single complex Fermi arc.

In the vicinity of (kx, kz) = (0,0), the structure of the Majorana
arcs of the C6-symmetric chiral superconductor can be obtained
within the semiclassical or Andreev approximation [we follow
Park et al. (81)]. Defining k⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2x � k2z

p
as the semiclassical

momentum perpendicular to the boundary and assuming that k⊥ ≫
kF(D0/eF), one obtains the Andreev Hamiltonian from the BdG
Hamiltonian as HBdG(k, r) → H⊥(k⊥, −i∇y) + H∥(k∥), with k∥ ≡
(kx, kz) and H⊥,∥ given in the Supplementary Materials. In obtaining
the surface Majorana arc Hamiltonian, one first solves H⊥(k⊥, − i∇y) for
zero-energy solutions at k∥ = 0 and projects H∥(k∥) into the subspace
of these solutions. At k∥ = 0, we find two solutions from which we
construct the second quantized operators gk∥1 and gk∥2 , satisfying
the Majorana condition g†k∥1;2 ¼ g�k∥1;2 . Projecting H∥(k∥) into the

subspace of gk∥ ¼ ðgk∥1gk∥2ÞT , we obtain

H∥ ¼ � D0

2kF
∑
k∥
gT�k∥ lakxI2 þ lbkz~szð Þgk∥ ð29Þ

where~sz ¼ ±1 labels the surface Majorana degree of freedom and I2 is
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
a 2 × 2 identity matrix. The profile of zero-energy states is simply ob-
tained as |lakx| = |lbkz|, in agreement with Eq. 27 and Fig. 3.

Next, we consider the case of the C3-symmetric superconductor with
gap function (16). As discussed in the “Off-axis point nodes” section, the
gap structure consists of eight single Majorana bulk nodes shown in
Fig. 1 (also in Fig. 2, including projections onto surface momentum
space). An analytical expression for the zero-energy mode profile analo-
gous to Eq. 27 cannot be obtained in this case, and we numerically solve
the characteristic polynomial. The result is shown in Fig. 3 (C and D).

Similar to the case of C6 superconductors, the Hamiltonian of the
surface Majorana arcs can be constructed in the vicinity of k∥ = 0
within the Andreev approximation. Again, we obtain two surface state
Majorana operators gk∥1;2 . The Hamiltonian of the Majorana arcs
reads as

H∥ ¼ D0

2kF
∑
k
gT�k AxkxI2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2c k

2
x þ A2

zk
2
z

q
~sz

� �
gk ð30Þ

where the coefficientsAx andAz are given byAx ¼ ðl2c � l2aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2a þ l2c

q
and A2

z ¼ l4al
2
b=ðl2a þ l2c Þ2 , respectively. The zero-energy states of the

Majorana arcs in the vicinity of k∥ = 0 are then given by the equation
k2xðl2a � 3l2c Þðl2a þ l2c Þ ¼ k2zl

2
al

2
b and exist only provided l2a > 3l2c .

Only in this range of parameters is the Hamiltonian (Eq. 30) meaningful
(otherwise, there is no low-energy excitations near k∥ = 0). This result is in
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Fig. 3. Majorana arc surface states. Plots of the zero-energy (E = 0) surfaceMajorana
arc states in surface momentum space for chiral J = 1 superconductors with C6
symmetry (A) and C3 symmetry (B to D) and gap functions 13 and 16, respectively.
(A), (C), and (D) show the Majorana arc states of a surface boundary in the xz plane
(that is, semi-infinite superconductor at y > 0), whereas (B) shows the Majorana arc
states of surface boundary in the xy plane (superconductor z > 0). As all panels show,
the surface Majorana arcs connect the projections of the bulk Majorana nodes. The
dashed circle shows the radius of the Fermi surface projection. In (A), the straight
dashed blue line denotes the Fermi arcs of superfluid 3He-A for comparison. The para-
meters used are given by laD0/m =0.013, lbD0/m =0.01, and lcD0/m =0.004, 0.009 in (B),
(C), and (D), respectively.
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total correspondence with the exact numerical solution shown in
Fig. 3 (C and D).

To conclude, we consider a surface boundary in the xy plane. In
this geometry, the bulk C = ±2 nodes of the C6 superconductor
project to a single surface momentum kx = ky = 0 such that no
well-defined Majorana arcs exist in this case. In contrast, the pro-
jections of the six off-axis C = ±1 nodes of the C3 superconductor
do not coincide and are connected by Majorana arc states, as shown
in Fig. 3B. As is clear from Fig. 3B, threefold rotational symmetry is
preserved.

The above analysis shows that spin-orbit–coupled chiral super-
conductors are topological nodal systems with characteristic surface
arc states. Chiral superconductors hosting Majorana fermions in the
bulk have spin-nondegenerate Majorana arcs on surface boundaries,
unlike complex fermions in Weyl semimetals or spin-degenerate
boundary states in superfluid 3He-A.

Candidate materials
The purpose of this section is to connect the general theory of spin-
orbit–coupled odd-parity chiral superconductors presented in this
study to reported experimental evidence for chiral and nodal pairing
in certain known superconductors. Because chiral nonunitary pairing
critically relies on spin-orbit coupling, we focus the search for candi-
date materials hosting Majorana fermions on materials with spin-orbit
coupling.

Heavy fermion materials are typically strongly spin-orbit–coupled,
and the vast majority of known heavy fermion superconductors are
believed to have unconventional pairing symmetry. Of particular in-
terest to this study are two heavy fermion compounds with filled skut-
terudite structure: PrOs4Sb12 (82, 83) and PrPt4Ge12 (84). For both
materials, signatures consistent with point nodes have been observed,
although the determination of the pairing state is not yet definitive
and the Majorana nature of nodal quasiparticles remains to be tested.

The skutterudite superconductor PrOs4Sb12 has tetrahedral
crystal structure with the point group Th. Thermal transport mea-
surements are indicative of a superconducting phase with point
nodes (85). The presence of point nodes has been further corrobo-
rated by the temperature dependence of the specific heat (82, 86),
the penetration depth and NMR spin relaxation rate (87), and es-
pecially Sb-NQR (88), finding spin relaxation rate proportional to
T5 at temperatures considerably below Tc. In addition, mSR mea-
surements have been interpreted as supporting time-reversal symmetry
breaking in the superconducting state (89), and Knight shift measure-
ments are suggestive of triplet pairing (90). Very recent Kerr angle
measurements provide even more support for time-reversal symmetry
breaking in the superconducting state (91).

A number of theoretical studies have proposed unconventional
pairing symmetries as possible descriptions of the superconducting
phases in PrOs4Sb12 (92, 93). It has been argued that, assuming broken
time-reversal symmetry and the existence of point nodes, to best fit
experiments, the phenomenological order parameter should be of
the three-component Tu symmetry (93). The time-reversal symmetry
broken phase then corresponds to the chiral combination (that is,
phase difference e±ip/2) of two components with different amplitude.
Within this framework, the resulting chiral superconductor is a non-
unitary pairing state with twofold rotational symmetry and nonde-
generate point nodes not pinned at a twofold axis. This quasiparticle
spectrum can be captured by the pairing gap function given by Eq.
17. As a result, the heavy fermion superconductor PrOs4Sb12 is
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
a promising candidate for realizing the off-axis gapless Majorana
fermions.

Another member of the family of filled skutterudites with the
same crystal structure as PrOs4Sb12 is the material PrPt4Ge12. Super-
conductivity has been observed in PrPt4Ge12 (84), and penetration
depth in combination with specific heat measurements has provided
evidence of point-like nodes (94, 95). Furthermore, a subsequent mSR
study has reported a spontaneous magnetization below Tc, which sug-
gests time-reversal symmetry breaking (96). These results point
toward PrPt4Ge12 as a second candidate to host gapless Majorana fer-
mions. However, an NQR spin relaxation study has provided support
for a weakly coupled BCS superconductor with an anisotropic s-wave
pairing gap with point nodes (97). In addition, it should be noted that
some experimental studies have found evidence for two-band super-
conductivity in PrPt4Ge12 (98–100), similar to the case of PrOs4Sb12
(101–103). As discussed when we considered the experimental detec-
tion of Majorana fermions, this may still be consistent with nonuni-
tary superconductivity.
DISCUSSION
A central pillar of this paper is the fact that time-reversal breaking
pairing in crystals with strong spin-orbit coupling is generically
nonunitary, leading to a (spin-)nondegenerate quasiparticle gap
structure. In spin-orbit coupling systems, chiral pairing channels
are labeled by the total angular momentum J of the Cooper pairs,
and the gap function is a general linear superposition of spherical
harmonics degenerate in the pairing channel. As shown in the
“Symmetry analysis of quasiparticle gap structures” section, the result-
ing gap function is typically nonunitary.

A consequence of the nonunitary nature of the pairing is the pres-
ence of nondegenerate point nodes, which satisfy the same Majorana
reality condition as in high-energy particle physics and therefore con-
stitute Majorana fermion quasiparticles in three dimensions. Depend-
ing on the (discrete) n-fold rotational symmetry of the crystal and the
angular momentum j of the Bloch electrons, these Majorana nodes
can be single nodes with linear dispersion or double nodes with qua-
dratic dispersion tangential to the Fermi surface. In addition,
symmetry may pin the nodes to the rotation axis, in which case we
call them on-axis nodes. When the rotational symmetry of the crystal
is low, the on-axis nodes can be split and the off-axis nodes (that is,
nodes at generic nonrotation invariant Fermi surface momenta) can
appear. The splitting of Majorana nodes and the appearance of off-
axis nodes are determined by the conservation of the topological
monopole charge associated with point nodes. Hence, it is an analog
of the trigonal warping of 2D Dirac fermions in bilayer graphene
(104). Here, we find both trigonal and orthorhombic warping of
Majorana nodes.

We note that our symmetry-based approach is general and
complete in the sense of treating the general case of Bloch electrons
with angular momentum j, forming Cooper pairs with total angular
momentum J in Cn-symmetric crystals. In particular, our analysis
applies to superconductors where the pairing is not between spin-12
electrons but more generally between spin-j electrons, such as j ¼ 3

2 as
in half-Heusler compounds (20, 21) or j ¼ 5

2 (22).
Experimental manifestations of nonunitary pairing, and conse-

quently of Majorana nodal fermions, can be searched by means of
probes sensitive to the difference in spin ↑ and ↓ gap structure. For
instance, the density of states clearly reflects the nondegeneracy of
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the quasiparticle spectrum, giving rise to two-gap features reminis-
cent of multiband superconductors. We demonstrated that the
NMR spin relaxation rate in nonunitary superconductors with
spin-selective low-energy quasiparticle excitations shows a marked
anisotropic dependence on the polarization of the nuclear spin. We
find that for a nuclear spin initially polarized along z, the relaxation
rate is significantly suppressed, which serves as a discriminating
feature of nonunitary superconductivity.

Chiral superconductors hosting Majorana fermions belong to
the class of topological nodal superconductors. Topological nodal
superconductors are analogs of topological semimetals called Weyl
semimetals. Similar to the latter, topological nodal superconductors
have special surface states: Majorana arcs in momentum space con-
necting projections of bulk nodes. Whereas the Majorana arcs
come in (spin-)degenerate pairs (effectively forming Fermi arcs)
in unitary superconductors, nonunitary superconductors have non-
degenerate Majorana arcs at surface boundaries, as demonstrated
in the previous section.

Most superconductors extensively studied in the literature are
examples of unitary pairing states. Comparatively, nonunitary
superconductors have received less attention. As discussed in the
first part of Results, from a conceptual standpoint, relying on
symmetry arguments, nonunitary pairing is natural and potentially
widespread in spin-orbit–coupled systems. We propose the heavy
fermion superconductor PrOs4Sb12 as a promising candidate for this
nonunitary pairing and consequently as a realization of Majorana fer-
mions in three dimensions.
 on D
ecem

ber 25, 2016
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MATERIALS AND METHODS
Details on symmetries and BCS-BdG mean-field theory
This section introduces the BCS-BdG mean-field theory and the
implementation of symmetries from a more formal perspective.
In crystals with strong spin-orbit coupling and in the presence of
both time-reversal (Q) and parity (P) symmetries, all electronic
bands remain twofold-degenerate, and the bands are labeled by
an effective pseudospin a = ↑, ↓. In the presence of Q, P, and crystal
rotation symmetry Cn, one can choose a basis such that the electrons
cka transform under Q and P as

QckaQ
�1 ¼ ðisyÞabc�kb and PckaP

�1 ¼ c�ka ð31Þ

respectively, and under n-fold rotation as

CnckaC
�1
n ¼ ðU†

nÞab ck*b; Un ¼ e�iqj 0
0 eiqj

� �
ð32Þ

where k* = Cnk. Furthermore, q = 2p/n is the angle of rotation,
and ±j is the total angular momentum of the Bloch electrons cka.
Note that as a result, a = ↑,↓ labels the general angular momentum
±j states.

The normal-state Hamiltonian is given by H0 ¼ ∑kc†kH0ðkÞck ,
with H0(k) = xkdab. The energy relative to the chemical potential,
given by xk = ek − m, is a scalar function of momentum composed
of terms invariant under the crystal symmetry group. The in-
variance of the normal-state Hamiltonian under an n-fold rotation
Cn is explicitly expressed as UnH0ðkÞU†

n ¼ H0ðCnkÞ.
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
In a BCS-BdG mean-field theory formulation, the pairing
Hamiltonian HD is expressed as

HD ¼ ∑
k

ðiDksyÞabc†kac†�kb þH:c: ð33Þ

where the pairing matrix Dk is the momentum-dependent gap
function and sx,y,z are Pauli spin matrices acting on a = ↑,↓.
We define the Nambu spinor Fk in the canonical basis with the
following

Fk ¼ cka
eabc

†
�kb

� �
ð34Þ

In terms of the Nambu spinor, the mean-field theory BdG
Hamiltonian takes the form HBdG ¼ ð1=2Þ∑kF

†
kHBdGðkÞFk with

HBdG kð Þ ¼ xk Dk

D†
k �xk

� �
ð35Þ

The pairing Hamiltonian transforms as QHDQ
−1 under time

reversal , which implies that the gap function transforms as
Dk→ðisyÞD*

�kð�isyÞ. Chiral superconductors break time-reversal sym-
metry, and one has ðisyÞD*

�kð�isyÞ≠ Dk . Similarly, odd-parity pairing
defined as PHDP

−1 = −HD implies D−k = −Dk for the pairing gap func-
tion. As a result of the latter, the BdG Hamiltonian has an effective
Z2 symmetry given by tzP such that tzPHBdG(k)(tzP)

−1 = HBdG(−k).
In addition to these symmetries, the BdG Hamiltonian manifestly
obeys a particle-hole symmetry XHBdGX

−1 = −HBdG, which implies
for HBdG(k): txHBdGðkÞtx ¼ �H*

BdGð�kÞ.

Details on chiral nonunitary superconductors with
angular momentum J
This paper studies odd-parity chiral superconductors in which the
Cooper pairs have a total angular momentum J = L + S. Because of
spin-orbit coupling, only total angular momentum is a good quan-
tum number. The pairing gap function of angular momentum J
chiral superconductors is defined through the n-fold rotation Cn,
which we assume to be a rotation about the z axis. Concretely,
the pairing gap function satisfies

U†
nDCnkUn ¼ eiqJDk; q ¼ 2p

n
ð36Þ

In a crystal with discrete Cn rotation symmetry, angular momen-
tum is only a defined mod n, which was manifested in Eq. 36. As a
consequence of Eq. 36, total angular momentum J = L + S labels the
different pairing channels of the chiral superconductors. Specifically,
the gap function takes the general form of Eq. 12, and all functions
FJ
t ðkÞwith combinations (L, S), such that L + S = J, are allowed to mix

in with coefficients lt.
The superconducting gap function of Eq. 12 can be explicitly

expanded in the spin matrices sx,y,z as Dk = d(k)⋅s, where d(k) is
the momentum-dependent vector. One then finds for D†

kDk

D†
kDk ¼ dj j2I2 þ id* � d⋅s ð37Þ
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When d* × d = 0, the pairing is said to be unitary, and the
quasiparticle spectrum of unitary pairing states is manifestly twofold-
(spin-)degenerate. In contrast, when d* × d ≠ 0, the pairing is said to
be nonunitary, and the quasiparticle energies are given by Ek± ¼
x2kþ
� ��dj2±jd* � djÞ1=2 . Consequently, nonunitary pairing states are
characterized by a nondegenerate quasiparticle energy dispersion, with
different gap structures for the spin ↑ and spin ↓ electrons.

As a consequence of spin-orbit coupling and the lack of spin-
rotation symmetry, the generic gap function given by Eq. 12 cor-
responds to nonunitary pairing states. This is easily seen using
Table 2.

Details on NMR spin relaxation calculation
This section briefly recapitulates how the NMR relaxation rate is
obtained. We calculate the NMR relaxation rate using Fermi’s golden
rule, which could be shown to be equivalent to Eq. 22. Defining the
nuclear spin coherent state |S〉 for a spin initially polarized along S =
(sin q cos f, sin q sin f, cos q) as |S〉 = [cos(q/2), eifsin(q/2)]T (we
considered nuclear spin 1

2 for simplicity), Fermi’s golden rule for the
NMR relaxation takes the form

1
T1

¼ 2p ∑
kk0ss0

〈� S; aks Hhfj jS; ak0s0 〉j j2�
fk0s0 ð1� fksÞdðEs0k0 � EskÞ ð38Þ

where aks are Bogoliubov quasiparticles, fk is the Fermi-Dirac distribution
function, and E1,2(k) are eigenenergies of BdG Hamiltonian.

Details on Majorana arcs in the Andreev approximation
This section explains how the Majorana arcs are calculated within
the Andreev approximation. To derive the Majorana arc surface
states within the semiclassical or Andreev approximation [follow-
ing Park et al. (81)], we solve the BdG Hamiltonian (Eq. 35) in the
presence of a spatially dependent pairing potential Dk(r). Specifical-
ly, we assume that Dk(r) is given by Dk(r) = DkQ(y), that is, a surface
boundary in the xz plane. Substituting k → −i∇, the first-quantized
BdG equation reads as

HBdGð�i∇ÞYðrÞ ¼ EYðrÞ ð39Þ

Here, Y(r) is a (first-quantized) spinor wave function, which we fur-
ther decomposed into YðrÞ ¼ yk∥;±ðrÞY0, where Y0 is a spinor, k∥ =
(kx, kz) is the momentum parallel to the boundary surface, which is a
good quantum number, and the functionsyk∥;±ðrÞ take the general form

yk∥;± rð Þ ¼ 1
N
eik∥⋅r∥e±ik⊥yc yð Þ ð40Þ

Here,N is a normalization constant, the parallel coordinates are giv-
en by r∥ = (x, z), and k⊥ ¼ ðk2F � k2∥Þ1=2 is defined as the semiclassical
momentum perpendicular to the boundary surface. c(y) is a scalar
function. We demand that the wave functions satisfy the Dirichlet
boundary condition at y = 0 and y → ∞, that is, Y(r)|y=0 = 0 and
Y(r)|y→∞ = 0. The function c(y) will always be such that the latter is
satisfied, and to satisfy the former, we take superpositions of incident
and reflected waves.

In the semiclassical approximation, defined by the condition k⊥ ≫
kF(D0/eF), the BdG equation (Eq. 39) takes the form of the Andreev
equation for c(y), given by
Kozii, Venderbos, Fu Sci. Adv. 2016;2 : e1601835 7 December 2016
EcðyÞY0 ¼ ½H0ðk∥Þ±H⊥ðk⊥;�i∇yÞ�cðyÞY0 ð41Þ

Here, the Hamiltonian H0(k∥) depends only on the momenta
k∥, and H⊥(k⊥,−i∇y) is a function of p̂y ¼ �i∇y and the semi-
classical momentum k⊥. Our strategy will be to solve Eq. 41 for
the case k∥ = 0 and E = 0 and then obtain the effective Hamiltonian
of the Majorana arcs in the vicinity of k∥ = 0 by projecting H0(k∥)
into the space of zero-energy solutions of H⊥(k⊥,−i∇y).
SUPPLEMENTARY MATERIALS
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