Anderson localization of electrons in single crystals: Li$_x$Fe$_7$Se$_8$

Tianping Ying,† Yueqiang Gu,† Xiao Chen,† Xinbo Wang,† Shifeng Jin,† Linlin Zhao,† Wei Zhang,¶ Xiaolong Chen†,‡,§

INTRODUCTION

Electrical conduction in crystalline solids is attributable to the fact of nonscattering propagation of electron waves. Such electrons are in extended states, and their wave characters are described as Bloch waves. However, this mechanism could not be valid when disorder gets involved. In certain cases, the electronic states in a metal could go from extended states to localized states; thus, a metal-insulator transition (MIT) will ensue. Anderson (1) first suggested that an ordered lattice with uncorrelated random potentials would eventually trap itinerant electrons, that is, Anderson localization, leading to a disorder-driven MIT. It is essentially a phenomenon of interference of electron waves, relying on degree of disorder in potential. MITs driven by Anderson localization differ in mechanism from ones by Mott transition and Peierls transition. Mott transition (2) arises from Coulomb interactions controlled by screening, where the degree of disorder is considerably less important, whereas Peierls transition is induced by change in crystal structure.

Originally proposed in electron systems, Anderson localization is highly relevant to wave phenomena and has been observed for photons (3–5), classical waves (6–8), matter waves (9), and cold atoms (10, 11). For electrons, Anderson localization has been confirmed in one dimension (1D) (12–14) and 2D (15, 16), both experimentally (17, 18) and theoretically (19–24). For 3D materials, although numerous publications are dedicated to doped semiconductors (25, 26), the MITs in these materials are now reckoned to result from the combined effects of Mott transition and Anderson localization (2). Recently, an MIT solely governed by disorder was observed in polycrystalline semiconducting GeTe-Sb$_2$Te$_3$ system (27–29). However, the small grain sizes (~10 to 20 nm) in GeSb$_2$Te$_4$ compounds complicate the understanding of transport properties, and to synthesize disordered GeSb$_2$Te$_4$ single crystals has not been yet feasible. Thus, to unambiguously determine the effect of lattice disorder on electron localization experimentally is still being pursued. Additionally, a recent study indicated the MIT observed in polycrystalline FeSeCu (30, 31) might be related to disorder. The progress has motivated us to find a 3D single crystalline Anderson insulator, which might serve as a paradigm to study disordered electronic systems.

Here, we report the occurrence of Anderson localization in 3D single crystals of Li$_x$Fe$_7$Se$_8$. The driving force behind its MIT stems from the randomness associated with Li doping to clean crystal Fe$_7$Se$_8$, resulting in a strong disordered potential. This randomness does not only destroy the superstructure of Fe$_7$Se$_8$ but also suppresses its spin ordering. We show that a large amount of electronic states at the Fermi level are still present; the electrical conduction exhibits a variable range hopping (VRH) behavior after the transition from metal to insulator. Additionally, localization length (ξ) is estimated to be about 12.3 Å, indicating that the electrons are localized within their next nearest neighboring unit cells. Quantitative analyses based on carrier concentration, density of states (DOS), and carrier mobility all support the occurrence of Anderson localization in Li$_x$Fe$_7$Se$_8$. All these phenomena could be fully explained by a phenomenological picture of electron localization.

RESULTS

The structure of Fe$_7$Se$_8$, reported by various authors (32, 33), adopts the “NiAs” structure, consisting of the stacking of FeSe layer along the c axis with space group P6$_3$mmc and lattice constant a = 3.63 Å and c = 5.89 Å (see Fig. 1). Fe vacancies usually appear in one layer among every three or four layers, resulting in a 3c or 4c superstructure. Additional diffraction peaks can be observed because of superstructure. The ordered vacancies are the origin of ferrimagnetism and are responsible for the
spin reorientation when the temperature decreases down to about 150 K (33). Electrical measurements also show that both “3c” and “4c” Fe$_7$Se$_8$ are metals [see fig. S1 or the work of Kamimura (34)].

We tried to dope Li, Na, Mg, and Co into Fe$_7$Se$_8$ but found that only Li could enter the lattice to form single-crystal Li$_x$Fe$_7$Se$_8$. This solid solution at $0.5 < x < 0.89$ can be easily grown into single crystals up to a centimeter in size with metallic luster (Fig. 1B). Below $x = 0.5$, a double-phase region exists. Fully occupied Li$_x$Fe$_7$Se$_8$ powder can be grown by using Li$_2$FeSe$_2$ flux as described in Materials and Methods. The structure determinations are performed by single-crystal diffraction and powder diffraction, respectively, which are shown in table S1 and fig. S2. A striking feature of the diffraction patterns is the gradual decrease in intensity for the superstructure peaks. With Li doping at about $x = 0.53$, the superstructure peaks totally disappear (Fig. 2A) and the structure is reduced to the fundamental NiAs structure with $a = 3.6648(5)$ Å and $c = 5.9708(7)$ Å. This result manifests that the disorder most likely originates from Fe sites. We also conducted transmission electron microscopy (TEM) experiments on Li$_x$Fe$_7$Se$_8$ and Fe$_7$Se$_8$ (fig. S3) because TEM is much more sensitive to superstructures than x-ray. Electron diffraction spots corresponding to superstructure gradually become vague and finally disappear in Li$_{0.53}$Fe$_7$Se$_8$. Because the ferrimagnetism of Fe$_7$Se$_8$ comes from the long-range order of local magnetic moment of Fe atoms with an intralayer ferromagnetism and interlayer antiferromagnetism picture (34), it is reasonable to speculate the suppression of ferrimagnetism when the Fe ions are in chaos. As shown in Fig. 2B, the ferrimagnetism of Li$_x$Fe$_7$Se$_8$ ($x \geq 0.53$) almost vanishes ($x = 0.53$ is multiplied by 30 and offset for clarity). Detailed investigations of magnetic properties together with the evolution of superstructures in TEM will be published elsewhere because they are not directly related to the present theme. Thus, disorder is verified to exist on Li$_x$Fe$_7$Se$_8$ lattices, which is a prerequisite for Anderson localization (I).

The effect of such disorder, if strong enough to destroy the periodic potential, should be first reflected in electrical transport measurements. As shown in Fig. 3A, when 6.6% of the 2a Wyckoff position is occupied by Li atoms, Li$_{0.53}$Fe$_7$Se$_8$ shows an insulating behavior ($dp/dt < 0$); thus, an MIT occurs. It is worth noting that this MIT is opposite to that in doped semiconductors, where an insulating-to-metallic transition takes place (25). Another distinct feature of Li$_x$Fe$_7$Se$_8$ from doped semiconductors is that they have relatively small resistivity. Note that the highest value is about 1 ohm·cm at 2 K for $x = 0.89$. To estimate the carrier concentration ($n$) before and after Li doping, we performed Hall measurements. The effect of such disorder, if strong enough to destroy the periodic potential, should be first reflected in electrical transport measurements.

**Fig. 1.** Crystal structure of Fe$_7$Se$_8$, Li$_x$Fe$_7$Se$_8$, and optical photograph of single crystals. (A) Fundamental NiAs structure of Li$_x$Fe$_7$Se$_8$ with space group $P6_3/mmc$. (B) Optical photograph of Li$_x$Fe$_7$Se$_8$ crystals. The acquired single crystals have metallic luster, and they are very robust against air and water and can be used in a variety of fields. (C) Crystal structure of parent compound Fe$_7$Se$_8$ (only 3c-Fe$_7$Se$_8$ is presented). Open circles denote vacancies, and Se atoms are omitted for clarity.

**Fig. 2.** Superstructure and magnetization of Li$_x$Fe$_7$Se$_8$. (A) Powder x-ray diffraction (XRD) of Li$_{0.53}$Fe$_7$Se$_8$ and Fe$_7$Se$_8$ with both Cu and Co Kα radiations. To see the superstructure peaks clearly, low-angle parts are shown exclusively. They are 8° to 31° and 8° to 36° for Cu and Co targets, respectively. These patterns are collected for long and same time duration. Peaks corresponding to superstructure are marked by red arrows. The number on each peak is its intensity counts (background is subtracted). These superstructure peaks of Fe$_7$Se$_8$ can be seen clearly with both Cu and Co Kα radiations, but systematically disappear in Li$_{0.53}$Fe$_7$Se$_8$. Red dot lines show the shifts of the peaks of fundamental NiAs structure, indicating the enlargement of lattice parameters after doping. (B) Suppression of magnetism of Li$_x$Fe$_7$Se$_8$ with the increment of lithium content. Inflections at around 130 to 150 K are caused by residual Fe$_7$Se$_8$, which experiences spin reorientation at this temperature (33). The magnetization of Li$_{0.53}$Fe$_7$Se$_8$ is multiplied by 30 for clarity.
measurements at room temperature and found that $n$ values of Li$_{x}$Fe$_7$Se$_8$ and Fe$_7$Se$_8$ lie above $10^{21}$ cm$^{-3}$, supporting the observed small resistivity. We are yet to determine the accurate values of $n$ because the Hall coefficients of 3D materials with high carrier concentration are quite small. Furthermore, we measured the resistivity of Li$_{0.89}$Fe$_7$Se$_8$ and Li$_{0.53}$Fe$_7$Se$_8$ at a magnetic field of 8 T. The result shows no difference at 0- and 8-T field (see fig. S4), indicating that the possible charge ordering is not significant (35, 36).

For an Anderson insulator, the hopping of electrons to their nearest neighboring sites is prohibited at low temperatures, because electrons need to overcome a high-energy barrier induced by disorder. Instead, these electrons have to find other sites to hop where energies between initial and final sites are close (37). This results in $\rho = \rho_0 \exp(T_0/T)^{1/n+1}$, where $n = 1, 2, 3$ for 1D, 2D, and 3D, respectively. In Fig. 3B, we plot $\ln \rho$ versus $T^{-1/(n+1)}$ for Li$_{0.89}$Fe$_7$Se$_8$ from 2 to 10 K (that of Li$_{0.53}$Fe$_7$Se$_8$ is shown in fig. S5). Clearly, $n = 3$ gives the most straight line, which means that the experimental conductivity obeys a 3D VRH region. This suggests that there are electronic states trapped in the vicinity of the Fermi surface, indicating the occurrence of Anderson localization. We note that a Coulomb gap in crystalline GeSb$_2$Te$_4$ has been reported recently (38), where the temperature-dependent resistivity changes from $T^{-1/4}$ to $T^{-1/2}$ below 5 K. $n = 1$ ($T^{-1/2}$ law) does not only mean 1D VRH but also corresponds to a dimension-independent Efros-Shklovskii hopping (39), namely, a soft gap opening at low temperature, when Coulomb repulsion is involved. However, our data fit better against $T^{-1/4}$ rather than against $T^{-1/2}$ even down to 2 K. If there is a soft gap at $E_F$, the slope of $\ln \rho \sim T^{-1/4}$ should increase at the low-temperature region. Apparently, this is not the case of Li$_{0.89}$Fe$_7$Se$_8$.

Another useful approach to distinguish Anderson transition from other possible mechanisms for MIT is to confirm that the $E_F$ is located within the localized states region (40). It is known that Sommerfeld coefficient $\gamma$ is directly related with the DOS, $N(E_F)$, on the Fermi surface through the equation

$$N(E_F) = (3/\pi^2 k_B^2) \gamma (m/m^*)$$

where $k_B$, $m$, and $m^*$ are Boltzmann constant and true and effective mass of electron, respectively. We have measured the heat capacity at low temperatures, 2 to 4 K, to extract $\gamma$. Figure 4A shows the variation of $\gamma$ with respect to Li doping in Li$_x$Fe$_7$Se$_8$.

We have found that the $\gamma$ of Li$_{0.53}$Fe$_7$Se$_8$ on the insulating side of MIT is quite large (up to 7.7 mJ/mol-K$^2$). The observation could be interpreted from the following two aspects. First, the $\gamma$ on the insulator side of the MIT region is not far away from that of the metallic Fe$_7$Se$_8$ ($\gamma = 9.86$ mJ/mol-K$^2$). If we ignore the difference of effective mass between before and after Li doping, the number of electrons on the $E_F$ in Li$_{0.53}$Fe$_7$Se$_8$ is comparable to that of Fe$_7$Se$_8$. Moderate variation of $m^*/m$ does not influence the conclusion. Second, the effective mass in Fe-based materials is found to be about 2 to 3. We tentatively use $m^* = 3 m_e$ here (41), giving a $N(E_F) = 9.7 \times 10^{66}$ m$^{-3}$ J$^{-1}$ for 1/8(Li$_{0.53}$Fe$_7$Se$_8$) by Eq. 1. "1/8" is introduced to normalize Li$_{0.53}$Fe$_7$Se$_8$ into a fundamental NiAs structure. The $\gamma$ changes gradually from 9.86 to 3.53 mJ/mol-K$^2$ at the highest doping level ($x = 0.89$) among single crystals Li$_x$Fe$_7$Se$_8$. This decline is mainly caused by carrier localization and will be discussed in detail later. The $N(E_F)$ of $x = 0.89$ sample is $4.5 \times 10^{66}$ m$^{-3}$ J$^{-1}$, which is comparable to that of Li$_{0.53}$Fe$_7$Se$_8$. In short, there exists a high amount of electronic states near the $E_F$, and it does not change much during the MIT.

It is known that spin glass could also contribute to a linear term in specific heat, which has been well described in a two-level tunneling model (42). We would rule out the possibility of spin glass by measuring $\gamma$ under different magnetic fields. As shown in Fig. 4B, we see no difference in $\gamma$ at 2 and 8 T as compared to zero field. So, we could conclude that the measured $\gamma$ is totally contributed by the electrons at the $E_F$.

Optical spectroscopy is a powerful technique to investigate charge dynamics of materials. We applied this method to Li$_{0.89}$Fe$_7$Se$_8$. As shown in Fig. 5, the room temperature reflectance and real part of optical conductivity spectrum versus photon energy curve manifest a typical metallic behavior (see fig. S6 for Li$_{0.53}$Fe$_7$Se$_8$). In light of the Drude-Lorentz fit of the optical conductivity, the plasma frequency
$\alpha_p$ of about 10,700 cm$^{-1}$ could be obtained. The carrier concentration is estimated by
\[ n = \frac{(0.724 \times 10^2 \text{cm}^{-3}) \cdot (m^*/m_e) \cdot (\alpha_p/8066)^2}{2} \]
Thus, the obtained $n$ is $3.8 \times 10^{21} \text{cm}^{-3}$, compatible with the Hall measurements. That is, the infrared reflectance data reveal an intriguing metallic response in the Anderson insulating state at room temperature.

With the obtained carrier concentration, we can further calculate the localization length ($\xi$) by
\[ T_0 = 16(1/k_B \cdot N(E_F) \cdot \xi^2) \]
where $T_0$ is the fitting parameter for VRH transport. By substituting $N(E_F)$ and $T_0$ for Li$_{0.53}$Fe$_7$Se$_8$ (see Table 1) into Eq. 3, we get $\xi = 12.3$ Å. This suggests that the wave functions of electrons only extend to their next nearest neighboring unit cells. We could estimate the critical carrier concentration ($n_c$) of MIT by the Mott criterion, $n_c = \frac{1}{3} \cdot \frac{\ni}{\alpha \cdot \xi^3}$ ($\alpha$ denotes effective Bohr radius). Here, $\xi$ is regarded as a better choice over $\alpha$. As in strongly disorder systems, the extension of the electron wave function is confined within the localization length (43). The calculated $n_c$ values are shown in Table 1. The carrier concentration for the sample with $x = 0.53$, if viewed as an MIT point, is seven orders of magnitude larger than its $n_c$, apparently deviating from the criterion. Even for the $x = 0.89$ sample, $n_{BR}$ is two orders of magnitude larger than $n_c$. All these facts demonstrate that Li$_x$Fe$_7$Se$_8$ compounds do not obey the Mott law.

**DISCUSSION**

The combination of electrical, optical, and specific heat measurements allows us to extract other physical parameters as summarized in Table 1 (see Statistical analysis in Materials and Methods for more details). A preliminary density functional theory calculation without considering disorder is shown in fig. S8, in which the Li doping does not change

\[ \gamma = 0.89 \]
\[ \gamma = 0.63 \]
\[ \gamma = 7.15 \]
\[ \gamma = 3.53 \]

![Fig. 4. Sommerfeld coefficients $\gamma$ with different Li dopings and applied magnetic fields. (A) Each point is acquired by fitting the data with the formula $C_p/T = \gamma + \beta T^2$ between 2 and 4 K ($C_p$ is the specific heat and $\beta T^2$ is the lattice contribution part). The raw data are shown in fig. S7. All the $\gamma$ is normalized into fundamental NiAs structure, namely, $1/8$Li$_{1-x}$Fe$_7$Se$_8$. The $\gamma$ of metallic Fe$_7$Se$_8$ is 9.86 mJ/mol-K$^2$, lying in the typical value range of transitional metals (5 to 10 mJ/mol-K$^2$) and agreeing with the data from the literature (45). Then, an MIT will ensue in the double-phase region. The $\gamma$ values at $x = 0.53$ and 0.63 decrease slightly compared with those of Fe$_7$Se$_8$. The Sommerfeld coefficient continuously declines to 3.53 mJ/mol-K$^2$ at $x = 0.89$. Single crystal at $x = 0.89$ has not yet been obtained. (B) Sommerfeld coefficient $\gamma$ of Li$_{0.53}$Fe$_7$Se$_8$ with applied magnetic field of 0, 2, and 8 T, respectively. All the fields are applied at room temperature. The purpose is to exclude the possible linear specific heat contribution of spin glass. As the figure shows, the Sommerfeld coefficient remains around 3.5 mJ/mol-K$^2$ under external fields.](http://advances.sciencemag.org/)

![Fig. 5. The room temperature reflectance and the real part of optical conductivity spectrum for Li$_{0.89}$Fe$_7$Se$_8$. The measurement was performed on a combination of Bruker IFS 80v and 113v at room temperature in the frequency range from 100 to 25,000 cm$^{-1}$ (12 meV to 3.1 eV). (A) The reflectance of Li$_{0.89}$Fe$_7$Se$_8$ approaches unity at zero frequency, resembling a typical metal response. (B) The optical conductivity was acquired by the Kramers-Kronig transformation of the reflectance spectrum. The Drude-Lorentz model was used to decompose the optical conductivity spectra into Drude component (orange dashed area) and Lorentz component (other broken lines), where the former describes the contribution from conduction electrons and the latter represents the interband transitions. Apparently, a Drude-like feature is observed at low frequencies, and we obtain the plasma frequency of conduction carriers $\omega_p \sim 10,700$ cm$^{-1}$. $\omega_p$ values for Fe$_7$Se$_8$ and Li$_{0.53}$Fe$_7$Se$_8$ are listed in Table 1.](http://advances.sciencemag.org/)
the rigid band of Fe$_7$Se$_8$ significantly and $N(E_F)$ remains substantially unchanged. This result is consistent with the values of $N(E_F)_{IR}$ and $n_{IR}(Li_{x}Fe_{7}Se_{8})/n_{IR}(Fe_{7}Se_{8})$ acquired from optical measurements at room temperature. In strongly disordered samples, although the number of total electronic states at $E_F$ remains the same, the measurable effective states will decrease upon temperature reduction, as evidenced by our low-temperature specific heat measurements: the derived $n_{CP}(Li_{x}Fe_{7}Se_{8})/n_{CP}(Fe_{7}Se_{8})$ values at 2 K drop by 52% (for $x = 0.53$) and 95% (for $x = 0.89$) as compared to the values obtained at room temperature, suggesting that most of the localized electrons at low temperatures get delocalized by thermal activation at room temperature. Similar behavior has also been reported by Siegrist et al. (27) and Jost et al. (29). The carrier mobility $\mu$ could reflect the degree of disorder. A decline of $\mu$ could be seen with the increasing Li doping at 2 or 300 K. For $x = 0.89$ sample, $\mu$ drops two orders of magnitude down to 2 K, where Anderson localization prevails. However, for Fe$_7$Se$_8$, its carrier mobility slightly increases because of low temperature phonon scattering decreases.

On the basis of the current results, a physical scenario in the present MIT is proposed in Fig. 6A. The dopant Li has dual functions. First, it slightly shifts the Fermi level. Second, disorder is introduced by Li doping, as indicated by the disappearance of superstructure. As a result, some electronic states near the band tail begin to be localized to form a mobility edge $E_M$. When the localized region increases beyond $E_M$, it triggers the MIT (Fig. 6A, middle). With increased Li content, $E_M$ will move far away from band tails, enhancing the VRH behavior in conduction (Fig. 6A, right). This strengthening disorder can explain the decrease of $\gamma$ in specific heat.

The occurrence of MIT in a disordered system could be seen as the competition between disorder and carrier concentration. In Fig. 6B, we present a sketch diagram with respect to carrier concentration $n$ and disorder strength $W$, proposed by Gantmakher and Man (44). In the region with moderate $n$ and high $W$, the probability to find Anderson localization is high. In Li$_{x}$Fe$_7$Se$_8$, $n$ equals to $10^{21}$ cm$^{-3}$, which is a moderate value; therefore, it is possible to obtain an insulator by Li doping. Given this, we can also understand why metal alloys with very high $n \sim 10^{23}$ cm$^{-3}$ can hardly be turned into insulators, even in amorphous forms.

Here, a new 3D single crystal, Li$_{x}$Fe$_7$Se$_8$, with disorder-induced MIT is reported. It is the doping of Li that destroys the ordered arrangement of Fe vacancies in Fe$_7$Se$_8$, produces large amount of disorder, and finally results in electron localization at the $E_F$. The nature of Anderson localization is confirmed by the results of electrical transport, heat capacity, optical measurements, and the analyses of localization length, carrier concentration, DOS, and carrier mobility. By using this same approach, that is, doping metals to obtain insulators, more disorder-induced MITs are anticipated. This discovery opens a new avenue to explore diverse aspects regarding disorder and MIT and could enhance our understanding of electronic structure of materials.

### Table 1. Summary of the physical parameters derived from electrical, specific heat, and optical measurements for Li$_{x}$Fe$_7$Se$_8$. $\sigma$ and $C_P$ are the data extracted from infrared spectra and specific heat measurements, respectively.

<table>
<thead>
<tr>
<th>$Li_{x}Fe_{7}Se_{8}$</th>
<th>$x = 0$ (Fe$_7$Se$_8$)</th>
<th>$x = 0.53$</th>
<th>$x = 0.89$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{300k}$ ($\Omega^{-1}$ cm$^{-1}$)</td>
<td>3,300</td>
<td>1,277</td>
<td>877</td>
</tr>
<tr>
<td>$\sigma_{2k}$ ($\Omega^{-1}$ cm$^{-1}$)</td>
<td>4,386</td>
<td>77</td>
<td>0.86</td>
</tr>
<tr>
<td>$\omega_0$ (cm$^{-1}$)</td>
<td>11,300</td>
<td>11,000</td>
<td>10,700</td>
</tr>
<tr>
<td>$\alpha_{3n}$ (cm$^{-3}$)</td>
<td>$4.3 \times 10^{21}$</td>
<td>$4.0 \times 10^{21}$</td>
<td>$3.8 \times 10^{21}$</td>
</tr>
<tr>
<td>$\alpha_{CP}$ (cm$^{-3}$)</td>
<td>$4.6 \times 10^{21}$</td>
<td>$2.2 \times 10^{21}$</td>
<td>$2.1 \times 10^{20}$</td>
</tr>
<tr>
<td>$\alpha_{Fe}$ (cm$^{-3}$ J$^{-1}$)</td>
<td>$1.2 \times 10^{27}$</td>
<td>$1.18 \times 10^{27}$</td>
<td>$1.16 \times 10^{27}$</td>
</tr>
<tr>
<td>$\alpha_{CP}$ (cm$^{-3}$ J$^{-1}$)</td>
<td>$1.3 \times 10^{27}$</td>
<td>$9.7 \times 10^{26}$</td>
<td>$4.5 \times 10^{26}$</td>
</tr>
<tr>
<td>$\alpha_{Fe}$ ($\alpha_{CP}$) (Fe$_7$Se$_8$)</td>
<td>100%</td>
<td>93%</td>
<td>88%</td>
</tr>
<tr>
<td>$\alpha_{CP}$ ($\alpha_{CP}$) (Fe$_7$Se$_8$)</td>
<td>100%</td>
<td>48%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Fig. 6. DOS evolution and carrier concentration versus disorder diagram. (A) On the basis of the shape of DOS (see fig. S8), $N(E)$ is shaped qualitatively as downward parabolas. Disorder herein will cause exponential tails. In Fe$_7$Se$_8$ (left), $E_F$ cuts in the middle of the band; electrons stay itinerant near the $E_F$. The doping of Li does not only slightly raise $E_F$ but also introduces disorder and leads to the appearance of a mobility edge $E_M$, which separates localized areas (shaded region) and itinerant area part. When the $E_M$ shifts below $E_F$ (middle), MIT occurs. At higher lithium contents (right), VRH will become more prominent with the enhancement of disorder as described in the text. (B) This figure is adapted from Gantmakher and Man (44). Horizontal axis represents disorder strength ($W$), vertical axis represents carrier concentration ($n$), and solid lines represent the boundaries of MIT (explained by Anderson localization or Mott transition mechanism). Asterisks and dots represent Li$_{x}$Fe$_7$Se$_8$, Ge$_2$Te$_3$, and metal alloy.
MATERIALS AND METHODS

Synthesis
We first synthesized Fe$_7$Se$_8$ following the method described by Okazaki (32). The acquired Fe$_7$Se$_8$ powder was mixed with certain amount of Li, was loaded into Al$_2$O$_3$ crucibles in glove box. Then, the alumina crucibles were sealed within evacuated quartz tubes backfilled with 0.4 atm argon. Single crystals were synthesized by heating the tubes to 1323 K, holding for several hours, and cooling to 1173 K in 3 to 5 days. Li$_x$Fe$_7$Se$_8$ crystals are quite stable and can be manipulated conveniently in air. Fully occupied Li$_x$Fe$_7$Se$_8$ powder was prepared by mixing Li$_x$Fe$_7$Se$_8$ with Li$_2$FeSe$_2$ by 1:1 in weight and reacting at 1173 K for several hours. (Li$_x$Fe$_7$Se$_2$, isostructural with Li$_2$FeSe$_2$, is another new Li–Fe–Se rhombohedral compound discovered by us and can easily be washed away by water.)

Structure
Single phases are acquired for $0 < x \leq 0.89$. With increasing Li doping, lattice constants $a$ gradually increases from 3.65 to 3.69 Å and \( c \) from 5.97 to 6.008 Å. Structure refinements on two typical single-phase samples are shown in fig. S2.

X-ray diffraction
Powder XRDs were carried out at room temperature using a PANalytical X’Pert PRO diffractometer with Cu and Co Kα radiation. Indexing and Rietveld refinements of the diffraction data were performed with DICVOL06 and FULLPROF package, respectively. Single-crystal diffraction of Li$_{0.89}$Fe$_7$Se$_8$ was collected at 100 K on a Bruker three-circle platform diffractometer equipped with SMART APEX CCD detector. The SHELXTL package was used for the structure determination and refinement.

Transmission electron microscope
Thin samples for TEM observations were prepared by crushing the crystals in an agate mortar filled with alcohol and then dispersing the resulting fine fragments suspended in alcohol on holey carbon films supported by copper grids. The TEM observations were carried out on a Philips CM200 electron microscope with field emission gun operated at 200 keV.

Magnetization
Magnetic susceptibility was characterized at $H = 1$ T, using a vibrating sample magnetometer (Quantum Design).

Electrical transport
Samples for electrical measurements were oriented by a goniometer and carefully cut and polished into rectangular shape. A standard four-probe method was used by using silver paste.

Specific heat
Specific heat measurements were carried out by a heat capacity option of Physical Property Measurement System (Quantum Design). We first performed the addenda measurements and then mounted 20 to 30 mg of samples on the platform to measure their specific heat at low temperatures.

Infrared experiments
See figure caption of Fig. 5.

Statistical analysis
(i) Fermi wave vector \( k_F = (3\pi^2 n)^{1/3} \)
(ii) Fermi energy \( E_F = h^2 k_F^2 / 2m^* \)

\( N(E_F) = 3n/2E_F \)

For the derivation of \( N(E_F) \), \( \hbar \) and localization length \( \xi \) see the main text.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/2/15/e1501283/DC1

Fig. S1. In-plane and out-of-plane resistivity of 3c-Fe$_7$Se$_8$.

Fig. S2. Rietveld refinements of Li$_x$Fe$_7$Se$_8$.

Fig. S3. Electron diffraction patterns of 3c-Fe$_7$Se$_8$ and Li$_{0.89}$Fe$_7$Se$_8$ taken along [100] direction.

Fig. S4. The plots of $\ln p$ versus $T^{1/3}$ of Li$_{0.33}$Fe$_7$Se$_8$ from 2 to 10 K.

Fig. S5. Resistivity of Li$_{0.53}$Fe$_7$Se$_8$ and Li$_{0.89}$Fe$_7$Se$_8$ at magnetic field of 0 and 8 T.

Fig. S6. The room temperature reflectance and the real part of optical conductivity spectrum for Li$_{0.89}$Fe$_7$Se$_8$.

Fig. S7. C$_p$/T versus $T^2$ plots of Li$_x$Fe$_7$Se$_8$.

Fig. S8. DOS of Li$_x$Fe$_7$Se$_8$ for $x = 0, 1/3, 2/3, 1$, respectively.

Table S1. Summary of data collection and refinement parameters for Li$_{0.89}$Fe$_7$Se$_8$.

REFERENCES AND NOTES


30. A. J. Williams, T. M. McQueen, V. Ksenofontov, C. Felser, R. J. Cava, The metal-insulator transition in Fe1.01–xCa1xSe. J. Phys.: Condens. Matter 22, 454106 (2010).


Acknowledgments: We thank the staff from the Institute of Physics (CAS, China). We are grateful to X. Deng, Q. Liao, R. Mazzarello, H. Wen, X. Dai, and N. Wang for fruitful discussions.

Funding: This work is financially supported by the National Natural Science Foundation of China (grants 51532010, 51472266, 91422303, and 51202286), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant XD007020100), and the International Centre for Diffraction Data. Author contributions: Xiaolong Chen, T.Y., and Y.G. designed the experimental scheme. T.Y. did most of the synthesis and characterizations. Xiao Chen did the TEM measurements. X.W. performed the optical experiments. S.J. refined the diffraction pattern of single crystal. L.Z. helped with the experiments. T.Y., Y.G., Xiaolong Chen, and W.Z. have no competing interests. Data and materials availability: The following references are acknowledged: A. Boultif, D. Louer, Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724–731 (2004); J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. Condens. Matter 192, 55–69 (1993); G. Sheldrick, SHELXL, version 6.10 (Bruker AXS Inc., Madison, WI, 2000). All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 15 September 2015
Accepted 7 December 2015
Published 19 February 2016
10.1126/sciadv.1501283

Anderson localization of electrons in single crystals: Li$_x$Fe$_7$Se$_8$

Tianping Ying, Yueqiang Gu, Xiao Chen, Xinbo Wang, Shifeng Jin, Linlin Zhao, Wei Zhang and Xiaolong Chen

Sci Adv 2 (2), e1501283.
DOI: 10.1126/sciadv.1501283